A REMARK ON A CONJECTURE OF BORWEIN AND CHOI

ROBERT OSBURN

ABSTRACT. We prove the remaining case of a conjecture of Borwein and Choi con-
cerning an estimate on the square of the number of solutions to n = 2 + Ny? for a
squarefree integer .

1. INTRODUCTION

We consider the positive definite quadratic form Q(z,y) = 22 + Ny? for a squarefree
integer N. Let ro y(n) denote the number of solutions to n = Q(x,y) (counting signs
and order). In this note, we estimate

Z 7‘2)]\](”)2.
n<zx

A positive squarefree integer N is called solvable (or more classically “numerus idoneus”)
if 22 + Ny? has one form per genus. Note that this means the class number of the form
class group of discriminant —4N equals the number of genera, 2¢, where ¢ is the number
of distinct prime factors of N. Concerning r2 y(n), Borwein and Choi [1] proved the
following:

Theorem 1.1. Let N be a solvable squarefree integer. Let x > 1 and € > 0. We have

2_ 3 2 .
ngrmgv(n) —N(pgvp+l)(xlogx+a(N)x)+0(N4 zite)

where the product is over all primes dividing 2N and

logp  2L'(1,x-an) 12,
a(N) = —1+4+2y+ + -=
) ! I;Verl L(l,x-an)

(2)

where v is the Euler-Mascheroni constant and L(1, x_4n) is the L-function corresponding
to the quadratic character mod —4N.

Based on this result, Borwein and Choi posed the following:
Conjecture 1.2. For any squarefree IV,

Zrz,N(n)Q ~ %( H p?fl)xloga:

n<z p|2N

The main result in [10] was the following.

Theorem 1.3. Let Q(z,y) = 2> + Ny? for a squarefree integer N with —N # 1 mod 4.
Let ro n(n) denote the number of solutions to n = Q(z,y) (counting signs and order).

Then 5 )
3 ran(n)? ~ N( 11 pfl)xlogﬂc.

n<z p|2N
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In this note, we settle the conjecture in the remaining case, namely

Theorem 1.4. For —N = 1 mod 4, we have

3 ran(n)? ~ %( 11 prl)xlogx.

n<w p|2N

2. PRELIMINARIES

Let Q(x,y) = ax? + bry + cy? denote a positive definite integral quadratic form with
discriminant D = b? — 4ac and ged(a,b,¢) = 1. Given Q, let x be the largest positive
integer with D/k? an integer congruent to 0 or 1 modulo 4. We call x the conductor of
Q and set d = D/k% Let r(Q,n) be the number of representations of the integer n by
the form Q. We now relate r(Q,n) to counting the number of integral ideals of norm n
in a given class in a generalized ideal class group.

Given D = k2d we consider ideals in O where K = Q(v/d). Let I, be the group of
fractional ideals of Ok which are quotients of ideals coprime to x and P, be the subgroup
of fractional ideals which are quotients of principal ideals () € I, where o € Z 4 kO.
Then set CL(K) = I, /P,. The elements of CL,(K) correspond bijectively to proper
equivalence classes of positive definite quadratic forms of discriminant D = x2d. If the
proper equivalence class of @ corresponds to the ideal class ¢, then by [3], page 219, we
have

r(@,n) =Y w((k/r)*d)J(c;,n/r?)
r|k
where
6 if D=-3
w(D)=<¢ 4 iftD=-4
2 otherwise.

Also J(cp,n) is the number of integral ideals of norm n in the class ¢, where ¢, is
the image of ¢ under the natural homomorphism CL,(K) — CL,,.(K). For the form
Q(r,y) = 22 + Ny? where —N = 1 mod 4, the conductor x = 2 and so we have

ro,n(n) = w(—4N)J (¢, n) + w(—N)J (c2,n/4)
=2J(¢,n) +w(—N)J(ca,n/4)

where ¢ is the image under CLy(K) — CL1(K), that is, ¢o is a class in the ideal class

group of K = Q(v/—N).

We now discuss a classical result of Rankin [11] and Selberg [12] Which estimates the

size of Fourier coefficients of a modular form. Specifically, if f(z Z e2™NZ s g

nonzero cusp form of weight k& on I'g(N), then

> la(n)” = alf, fla* +O@*~%)

n<x
where @ > 0 is an absolute constant and (f, f) is the Petersson scalar product. In
particular, if f is a cusp form of weight 1, then Z la(n)|* = O(x). One can adapt their

n<x
result to say the following. Given two ) cusp forms of weight k on a suitable congruence

subgroup of I' = SLa(Z), say f(z) = Z a(n)e?™* and g(z Z b(n)e?™"*, then

n=1
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Z a(n)b(n)n'=* = Az + O(z

n<x

3
5

°)

where A is a constant. In particular, if f and g are cusp forms of weight 1, then

> a(n)b(n) = O(x).
n<zx

We conclude this section with a relationship between genus characters of generalized
ideal class groups and the poles of the Rankin-Selberg convolution of L-functions. Recall
that a group homomorphism y : I, — S is an ideal class character if it is trivial on Ps,
ie.

x({a)) =1
for a = 1 mod (2). Thus an ideal class character is a character on the generalized class
group I,/ Ps. Recall also that a genus character (see Chapter 12, section 5 in [5]) is an
ideal class character of order at most two.
Let us also recall the notion of the Rankin-Selberg convolution of two L-functions. For
squarefree N, consider two ideal class characters x1, x2 for CLa(K), the generalized ideal
class group of K = Q(v/—N) and their associated Hecke L-series

X1

SX1
(a,2)= 1
X2

(s,x2)
(a,2)= 1
which converge absolutely in some right half-plane. We form the convolution L-series by
multiplying the coefficients,

a)x
La(s; x1 ® x2) Z Xl )

(a,2)=1
The following result describes a relationship between genus characters x and the orders
of poles of La(s,x ® x). The proof is similar to that of Proposition 2.4 in [10].

Proposition 2.1. Let x be an ideal class character for CLo(K), —N = 1 mod 4, and
Lo(s, x) the associated Hecke L-series. Then x is a genus character if and only if La(s, x®
X) has a double pole at s = 1.

Remark 2.2. By Proposition 2.1, if x is a non-genus character, then Lo(s, x ® x) has
at most a simple pole at s = 1.

3. PROOF OF THEOREM 1.4

Proof. As the proof is similar to that of Theorem 1.3 in [10], we sketch the relevant
details. If —N = 1mod 4, then the discriminant of K = Q(v/—N) is —N. We also
assume that ¢ is the number of distinct prime factors of N and so the discriminant —N
also has t distinct prime factors. For K = Q(v/—N), consider the zeta function

(2= Y

(a,2)=1

where the sum is over those ideals a of Ok prime to 2. We now split up (x(s,2),
according to the classes ¢; of the generalized ideal class group C'Ly(K), into the partial
zeta functions (see page 161 of [7])
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1
Ceils) = Ny

acc;

hso—1
so that (k(s,2) = Z Cc; (s) where hg is the order of C'Ly(K).

=0
Let ¢ be the ideal class in C'Ly(K) which corresponds to the proper equivalence class
of Q(z,y) = 2% + Ny?. Now let x be an ideal class character of CLs(K) and consider
the Hecke L-series for x, namely

Las) = 3 ]5(())

(a,2)=1

We may now rewrite the Hecke L-series as

ha—1

La(s, ) = 3 x(e)Ce ().

=0
And so summing over all ideal class characters of CLo(K), we have

ha—1

S X(OLa(s0) = Y Cals) (S TOK() )
X =0 X

The inner sum is nonzero precisely when ¢ = ¢;. Thus we have
1 _
() = 7= X La(s.X)
X

and so

Ce(s) = %(LQ(*S? X0) +X1(e)La(s, X1) + +++ + Xno—1(¢) L2 (8, Xhy—1))-

As X0 is the trivial character, La(s, x0) = Cx(s,2). Comparing n'"* coefficients, we

have

J(c,n) = hi2(an +bi(n) 4+ -+ bp,—1(n)).

where a,, is the number of integral ideals of Ok prime to 2 and of norm n and the b;’s
are coefficients of weight 1 cusp forms (see [2]). Recall we also have

ro,n(n) = 2J(¢,n) + w(—N)J(c2,n/4)

and so
2
ra(n) = o (an Fbi(n) 4o+ bh2_1(n)) Fw(—N)J(c2,n/4).
Thus
4
Z TQ,N(TL)Q = ﬁ ( Z ai + Z bi(n)Q + 2 Z Clnbi(’fl) + Z bz(n)bj (n)) +
n<z 2 "n<w i i i#j
n<x n<x n<z
4

" 3 (an Fbi(n) 4o+ bh2_1(n))w(—N)J(c2, n/4) + 3 w(=N)> T (e, n/4)%.

n<x n<x
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Assume —N = 1 mod 8. Applying the main theorem in [6] to the Dirichlet series

> 2

a .
E -2, we obtain
nS

n=1
Z a? ~ Azlogx
n<zx
1
where A = —L(LX_N)2 P As —N has ¢ distinct prime factors, we have 2°
272 p+1

pIN
genus characters for CL(K) where K = Q(v/—N). By [7] (see Theorem 1, page 127),
we have 2¢ genus characters for CLy(K). We now must estimate Z bi(n)®. Let us now
assume that the first 2 — 1 terms arise from L-functions associated to genus characters.
By Proposition 2.1 and an application of Perron’s formula, we obtain

Z bi(n)® ~ Azlogz.

n<x
As this estimate holds for each i such that 1 <4 < 2! — 1, the term Axlogx appears 2!
times in the estimate of Z 7“27N(n)2. By Remark 2.2 and the Rankin-Selberg estimate,

n<z
the remaining terms are all O(x). Thus

ZTQN (2t—L 2H )xlogm.
n<x ZD|N
By [4], we have L(1,x_n) = h—\/”ﬁ where h is the class number of K and hy = h. Thus
2p
ZTQN N—(H )a:loga:.
n<z p|2N p+l1

For —N =5 mod 8, we have hy = 3h and again by [6],

9
2 2 p
E aZ ~ (_27r2 L(1,x-n) | | p l)a:loga:.

n<z p|N

Thus

2 3 2
ZTQ’N(TL) NN( H p—fl

n<x p|2N

)a:loga:.

O

Remark 3.1. We would like to mention another approach which confirms Theorems 1.3
and 1.4. Let Q € Z?*?2 be a non-singular symmetric matrix with even diagonal entries
and ¢(x) = 3Q[x] = 3x7Qx, x € Z?, the associated quadratic form in two variables.
Let 7(Q,n) denote the number of representations of n by the quadratic form Q. Now
consider the theta function

(Z) _ Z eﬂ-izQ[x]

x€EZ?
The Dirichlet series associated with the automorphic form ¢ is
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(477)_1/QCQ(% +3)
where
Gl =3 B 5
n=1 x€Z?\{0}
for R(s) > 1. A careful and involved application of the Rankin-Selberg method to the
above Dirichlet series (see Theorems 2.1 and 5.1 in [8] and Theorem 5.2 in [9]) combined
with a Tauberian argument yields the following (see Theorem 6.1 in [8])

Z r(Q,n)* ~ Agrlogx

n<zx

Ag = 12%1_[ (1+ 1)71.

p
plg

Here ¢ = det @ and A(gq) denotes the multiplicative function defined by
A(pf) =2+ (1= L)e—1)
where p is an odd prime, e > 1, and

where

1 ife<1,
A(2°) = 2 ife=2,
e—1 ife>3.

Let us now turn to our situation. Consider ¢(x) = 22 + Ny? = %XTQX where ) =

((2) 2?\7 , N squarefree. Thus ¢ = 4N. Suppose N has t distinct prime factors. Then

A(4N) =2+ and so

3 1\ -1 3 2p
AQ:—2t+1 H (1+—) = — H _—
N p2N p N p2N ptl
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