MA2071

Solutions to Practice midterm

- 1) (i) We have $a(x x_0) + b(y y_0) + c(z z_0) = 0$ or ax + by + cz + d = 0 where $d = -(ax_0 + by_0 + cz_0)$.
 - (ii) Let $P_0 = (x_0, y_0, z_0) \in P$ and consider the vector $\mathbf{b} = \overrightarrow{P_0P_1} = \langle x_1 x_0, y_1 y_0, z_1 z_0 \rangle$. Note that D equals the absolute value of the scalar projection of \mathbf{b} onto the normal vector $\mathbf{n} = \langle a, b, c \rangle$. Thus,

$$D = |\text{comp}_{\mathbf{n}}\mathbf{b}| = \frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|} = \frac{|(ax_1 + by_1 + cz_1) - (ax_0 + by_0 + cz_0)|}{\sqrt{a^2 + b^2 + c^2}}.$$

As $P_0 \in P$, we have $ax_0 + by_0 + cz_0 + d = 0$ and the result follows.

2) (i) Let (x,y) approach (0,0) through the line L given by y=mx where $m\neq 0$. Check that $f(x,y)=f(x,mx)=\frac{m^2x}{1+m^4x^2}$. So, as (x,y) approaches (0,0) through L, then f(x,y) approaches 0. Now, let (x,y) approach (0,0) along the parabola P given by $x=y^2$. Check that $f(x,y)=f(y^2,y)=\frac{1}{2}$. So, as (x,y) approaches (0,0) through P, f(x,y) approaches $\frac{1}{2}$. Thus, the limit does not exist.

(ii) Let
$$F(x, y, z) = xyz - \cos(x + y + z) = 0$$
. So, $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{yz + \sin(x + y + z)}{xy + \sin(x + y + z)}$ and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{xz + \sin(x + y + z)}{xy + \sin(x + y + z)}$.

- 3) (i) See the notes.
 - (ii) For $(x,y) \neq (0,0)$, check that $f_x(x,y) = \frac{x^4y + 4x^2y^3 y^5}{(x^2 + y^2)^2}$ and $f_y(x,y) = \frac{x^5 4x^3q^2 xy^4}{(x^2 + y^2)^2}$. Using the definition, check that $f_x(0,0) = 0$ and $f_y(0,0) = 0$. Also, use the definition to check that $f_{xy}(0,0) = -1$ and $f_{yx}(0,0) = 1$. Note that $f_{xy}(x,y)$ is not continuous at (0,0). To see this, check that $f_{xy} = \frac{x^6 + 9x^4y^2 4x^2y^4 + 4y^6}{(x^2 + y^2)^3}$. Now, as (x,y) approaches (0,0) along the x-axis, then $f_{xy}(x,y)$ approaches 1 while as (x,y) approaches (0,0) along the y-axis, then $f_{xy}(x,y)$ approaches 4. Thus, Clairaut's Theorem does not apply.

(iii) Let
$$u = x + at$$
 and $v = x - at$. Then $z = f(u) + g(v)$. So, $\frac{\partial z}{\partial u} = f'(u)$ and $\frac{\partial z}{\partial v} = g'(v)$. Thus, $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial t} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial t} = af'(u) - ag'(v)$ and

$$\frac{\partial^2 z}{\partial t^2} = a \frac{\partial}{\partial t} (f'(u) - g'(v)) = a \left(\frac{df'(u)}{du} \frac{\partial u}{\partial t} - \frac{dg'(v)}{dv} \frac{\partial u}{\partial t} \right) = a^2 f''(u) + a^2 g''(v).$$
Similarly, $\frac{\partial z}{\partial x} = f'(u) + g'(v)$ and $\frac{\partial^2 z}{\partial x^2} = f''(u) + g''(v)$. So, the result follows.

- 4) (i) The direction of fastest change is $\nabla f(x,y) = (2x-2)\mathbf{i} + (2y-4)\mathbf{j}$. So, we need to find all points (x,y) where $\nabla f(x,y)$ is parallel to $\mathbf{i} + \mathbf{j}$. This occurs if and only if $(2x-2)\mathbf{i} + (2y-4)\mathbf{j} = k(\mathbf{i} + \mathbf{j})$ for some $k \in \mathbb{R}$. Thus, k = 2x-2 and k = 2y-4 and so y = x+1. So, the direction of fastest change is $\mathbf{i} + \mathbf{j}$ at all points on the line y = x+1.
 - (ii) Let x,y and z be dimensions of the rectangular box. Then V=xyz and $L=\sqrt{x^2+y^2+z^2}$. So, $L^2=x^2+y^2+z^2$ and so $z=\sqrt{L^2-x^2-y^2}$. This gives $V(x,y)=xy\sqrt{L^2-x^2-y^2}$ for x,y>0. Check that $V_x=y\sqrt{L^2-x^2-y^2}-\frac{x^2y}{\sqrt{L^2-x^2-y^2}}$ and $V_y=x\sqrt{L^2-x^2-y^2}-\frac{xy^2}{\sqrt{L^2-x^2-y^2}}$. Now, $V_x=0$ implies $y(L^2-x^2-y^2)=x^2y$ or $y(L^2-2x^2-y^2)=0$ and so $2x^2+y^2=L^2$ since y>0. Similarly, $V_y=0$ implies $x(L^2-x^2-y^2)=xy^2$ or $x(L^2-x^2-2y^2)=0$ and so $x^2+2y^2+L^2$ since x>0. Substitute $y^2=L^2-2x^2$ into $x^2+2y^2=L^2$ to get $x^2+2L^2-4x^2=L^2$ or $3x^2=L^2$. Thus, $x=\frac{L}{\sqrt{3}}$ since x>0. This implies $y=\frac{L}{\sqrt{3}}$. So, the only critical point is $\left(\frac{L}{\sqrt{3}},\frac{L}{\sqrt{3}}\right)$ which must be the absolute maximum. Thus, the largest possible volume is $V\left(\frac{L}{\sqrt{3}},\frac{L}{\sqrt{3}}\right)=\frac{L^3}{3\sqrt{3}}$.