MA2071

Solutions to Midterm Exam

- 1) (i) We have $a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$ or ax + by + cz + d = 0 where $d = -(ax_0 + by_0 + cz_0)$.
 - (ii) True.
 - (iii) First, note that the planes are parallel as their normal vectors $\langle 10,2,-2\rangle$ and $\langle 5,1,-1\rangle$ are parallel. To find D, choose any point on one plane and calculate the distance from it to the other plane. Putting y=z=0 into the first equation yields 10x=5 and so the point (1/2,0,0) is on this plane. By the lecture notes (or practice midterm), the distance between (1/2,0,0) and the plane 5x+y-z-1=0 is

$$D = \frac{|5(1/2) + 1(0) - 1(0) - 1|}{\sqrt{5^2 + 1^2 + (-1)^2}} = \frac{\sqrt{3}}{6}.$$

- 2) (i) See the lecture notes.
 - (ii) Let u = x y. Then $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} = \frac{\partial z}{\partial u} \cdot 1$. Also, we have $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} = \frac{\partial z}{\partial u} \cdot (-1)$. Thus, the result follows.
- 3) (i) We have $f_x = 2x + y \cos xy$ and so $f_x(1,0) = 2$. Also, $f_y = x \cos xy$ and so $f_y(1,0) = 1$. Now, if **u** is a unit vector with angle θ with the positive x-axis, then $D_{\mathbf{u}}f(1,0) = f_x(1,0)\cos\theta + f_y(1,0)\sin\theta = 2\cos\theta + \sin\theta$. We want $1 = D_{\mathbf{u}}f(1,0)$ which implies $1 = 2\cos\theta + \sin\theta$. Squaring both sides yields $\sin^2\theta = (1 2\cos\theta)^2$ or $1 \cos^2\theta = 1 4\cos\theta + 4\cos^2\theta$ or $\cos\theta(5\cos\theta 4) = 0$. This implies $\cos\theta = 0$ or $\cos\theta = 4/5$. Thus, $\theta = \pi/2$ or $\theta = 2\pi \cos^{-1}(4/5) = 5.64$.
 - (ii) Let $F(x, y, z) = yz \ln(x + z)$. Then $\nabla F(x, y, z) = \left\langle -\frac{1}{x + z}, z, y \frac{1}{x + z} \right\rangle$. So, $\nabla F(0, 0, 1) = \langle -1, 1, -1 \rangle$. Thus, we have -1(x - 0) + (1)(y - 0) - 1(z - 1) = 0 or x - y + z = 1.
- 4) Let x and y denote the sides of the rectangle. Then f(x,y) = xy and g(x,y) = 2x + 2y = p. Using Lagrange multipliers, we have $f_x = \lambda g_x$ or $y = 2\lambda$ and $f_y = \lambda g_y$ or $x = 2\lambda$. Thus, $\lambda = y/2 = x/2$ or x = y. Thus, we have a square. Note that the length of a side is then 4x = p or x = p/4.