Exercise Set 4 MA2071

(1) Find the directional derivative of f at $P = [x_0, y_0, z_0]$ in the direction v.

(i)
$$f(x, y) = 1 + 2x\sqrt{y}$$
, $P = [3, 4]$, $v = [4, -3]$
(ii) $f(x, y, z) = x/(y+z)$, $P = [4, 1, 1]$, $v = [1, 2, 3]$

- (2) Find the directional derivative of $f(x, y, z) = x^2 + y^2 + z^2$ at P = [2, 1, 3] in the direction of the origin.
- (3) Find the maximal and minimal rates of change of f at the given point P, and determine the direction in which this occurs.

(i)
$$f(x, y, z) = x^2y^3z^4$$
 at $P = [1, 1, 1]$.
(ii) $f(x, y, z) = \ln(xy^2z^3)$ at $P = [1, -2, -3]$.

- (4) Find equations of the tangent planes of the given surfaces at the specified points.
 - (i) $x^2 + 2y^2 + 3z^2 = 21$ at P = [4, -1, 1](ii) $x - z = 4\arctan(yz)$ at $P = [1 + \pi, 1, 1]$.
- (5) Find the points on the ellipsoid $x^2 + 2y^2 + 3z^2 = 1$ at which the tangent plane is parallel to the plane 3x y + 3z = 1.