Exercise Set 3 MA2071

(1) Find the equation of the tangent plane of the given surface at the specified point.

(i)
$$z = \sqrt{4 - x^2 - 2y^2}$$
 at $p = (1, -1, 1)$
(ii) $z = y \log x$ at $p = (1, 4, 0)$

(ii)
$$z = y \log x$$
 at $p = (1, 4, 0)$

(2) Find the differentials of the following functions

(i)
$$z = x^3 \log(y^2)$$

(i)
$$z = x^3 \log(y^2)$$

(ii) $w = \log \sqrt{x^2 + y^2 + z^2}$

(3) Use the chain rule to find dz/dt and dw/dt for

(i)
$$z = \sin x \cos y$$
 where $x = \pi t$, $y = \sqrt{t}$

(i)
$$z=\sin x\cos y$$
 where $x=\pi t,\ y=\sqrt{t}$
(ii) $w=xy+yz^2$ where $x=e^t,\ y=e^t\sin t,\ z=e^t\cos t$

(4) Use the chain rule to find the indicated partial derivatives

(i)
$$z = x^2 + xy^3$$
 where $x = uv^2 + w^3$, $y = u + ve^w$.

Find
$$\frac{\partial z}{\partial u}$$
, $\frac{\partial z}{\partial v}$, $\frac{\partial z}{\partial w}$ when $u = 2$, $v = 1$, $w = 0$

(ii)
$$R = \log(u^2 + v^2 + w^2)$$
 where $u = x + 2y$, $v = 2x - y$, $w = 2xy$.

Find
$$\frac{\partial \hat{R}}{\partial x}$$
, $\frac{\partial R}{\partial y}$ when $x = y = 1$

(5) Let
$$z = f(x, y)$$
.

- (i) Suppose $x = r \cos \theta$, $y = r \sin \theta$.
 - (a) Show that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$

(b) Show that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} + \frac{1}{r} \frac{\partial z}{\partial r}$$

(ii) Suppose x = s + t, y = s - t. Show that

$$\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = \frac{\partial z}{\partial s}\frac{\partial z}{\partial t}$$