Exercise Set 2 MA2071

- (1) Do the following limits exist?
 - (i) $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$ (ii) $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$
- (2) Use the definition of partial derivatives as limits to find f_x and f_y for

 - (i) $f(x, y) = xy^2 x^2y$ (ii) $f(x, y) = \frac{x}{x + y^2}$
- (3) Use implicit differentiation to find $\partial z/\partial x$ and $\partial z/\partial y$ for
 - (i) $yz = \ln(x+z)$
 - (ii) $x z = \arctan(yz)$.
- (4) Verify Clairaut's Theorem for the following functions.

 - (i) $f(x, y) = x \sin(x + 2y)$ (ii) $f(x, y) = x^4y^2 2xy^5$.
- (5) Find all second partial derivatives.
 - (i) $f(x, y) = \ln(3x + 5y)$ (ii) $z = \frac{x}{x+y}$.
- (6) Find the indicated partial derivatives.

 - (i) $f(x, t) = x^2 e^{-ct}$; f_{ttt} , f_{txx} (ii) $f(x, y, z) = \cos(4x + 3y + 2z)$; f_{xyz} , f_{zyx} .
- (7) The ellipsoid $4x^2 + 2y^2 + z^2 = 16$ intersects the plane y = 2 in an ellipse. Find the equation of the tangent line to the ellipse at the point (1, 2, 2).