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Abstract. We prove asymptotics and study sign patterns for coefficients in expansions of
elements in the Habiro ring which satisfy a strange identity. As an application, we prove
asymptotics and discuss positivity for the generalized Fishburn numbers which arise from the
Kontsevich-Zagier series associated to the colored Jones polynomial for a family of torus knots.
This extends Zagier’s result on asymptotics for the Fishburn numbers.

1. Introduction

The expression

F (q) :=
∞∑
n=0

(q)n (1.1)

first occurred in a talk entitled “Analytic continuation of Feynman integrals” by Kontsevich as
part of the Seminar on Algebra, Geometry and Physics at MPIM Bonn on October 14, 1997.
Here and throughout,

(a)n = (a; q)n :=
n∏
k=1

(1− aqk−1)

is the standard q-hypergeometric notation. Note that (1.1) does not converge on any open subset
of C, but is well-defined when q is a root of unity (where it is finite) and when q is replaced by
1− q. Moreover, F (q) is an element of the Habiro ring [13]

H := lim←−
n

Z[q]/〈(q)n〉.

Motivated by Kontsevich’s lecture and Stoimenow’s work on regular linearized chord diagrams
[16], Zagier determined the asymptotic behavior for the Fishburn numbers ξ(n) which are the
coefficients in the formal power series expansion

F (1− q) =:

∞∑
n=0

ξ(n)qn = 1 + q + 2q2 + 5q3 + 15q4 + 53q5 + · · · .

Namely, as n→∞ [19, Theorem 4]

ξ(n) ∼
( 6

π2

)n
n!
√
n

(
C0 +

C1

n
+ · · ·

)
(1.2)
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where C0 = 12
√

3

π
5
2
e
π2

12 , C1 = C0

(
3
8 −

17π2

144 + π4

432

)
and all Ci are effectively computable constants.

A key step in proving (1.2) is the “strange identity”

F (q)“ = ”− 1

2

∞∑
n=1

n
(12

n

)
q
n2−1
24 (1.3)

where “ = ” means that the two sides agree to all orders at every root of unity (for further
details, see [19, Sections 2 and 5]) and

(
12
∗
)

is the quadratic character of conductor 12. The

idea is to first express ξ(n) in terms of the Taylor series coefficients of F (e−t), then employ (1.3)
to, ultimately, obtain estimates for these coefficients. These estimates, in turn, lead to (1.2).
“Identities” such as (1.3) are not only important in proving asymptotics, but also play a crucial
role in obtaining congruences for ξ(n) modulo prime powers [2] and quantum modularity for
F (q) [20]. For developments in these latter two directions, see [1,2,5,8–12,17]. The positivity of
the Fishburn numbers ξ(n) is a consequence of any of its numerous combinatorial interpretations
[18, A022493]. The purpose of this paper is to prove asymptotics and study sign patterns for
coefficients in expansions of elements inH which satisfy a general type of strange identity. Before
stating our main result, we introduce some notation.

Let f : Z → C be a function of period M ≥ 2. For integers a ≥ 0 and b > 0, consider the
partial theta series

θ
(ν)
a,b,f (q) :=

∞∑
n=0

nνf(n)q
n2−a
b

where ν ∈ {0, 1}. Suppose there exists

Ff (q) :=
∞∑
n=0

An,f (q)(q)n ∈ H

where An,f (q) ∈ Z[q] such that

Ff (q)“ = ”θ
(ν)
a,b,f (q). (1.4)

We write

Ff (1− q) =:
∞∑
n=0

ξf (n)qn

and define

G
(ν)
f (k) :=



2√
M

∑
m (mod M)

f(m) sin
(2πmk

M

)
if ν = 0,

2√
M

∑
m (mod M)

f(m) cos
(2πmk

M

)
if ν = 1.

(1.5)

Assume there exists a smallest positive integer kν such that G
(ν)
f (kν) 6= 0. Next, we define

Mf,ν := 2 · #{0 ≤ m ≤M − 1 : f(m) 6= 0}
|G(ν)

f (kν)|
√
M

max
0≤m≤M−1

|f(m)| (1.6)
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and let N
(max)
f,ν ≥ 0 be the smallest integer such that

Mf,ν (ζ(2n+ ν + 1)− 1) < 1 (1.7)

for n ≥ N
(max)
f,ν where ζ(s) is the Riemann zeta function. Observe that N

(max)
f,ν exists since

ζ(2n + ν + 1) − 1 → 0 as n → ∞ and Mf,ν is independent of n. Finally, let Bk(x) denote the
kth Bernoulli polynomial for an integer k ≥ 0. Our main result is now the following.

Theorem 1.1. Assume (1.4) is true. Then as n→∞, we have

ξf (n) ∼ (−1)ν
(

M

2πkν

)2n+ν+1 G
(ν)
f (kν)22n+νn!nν−

1
2

bn
√
πM

e
bk2νπ

2

2M2 . (1.8)

Moreover, there exists an integer 0 ≤ Nf,ν ≤ N
(max)
f,ν such that if

(−1)n+1
M∑
m=1

f(m)B2n+ν+1

(m
M

)
(1.9)

has the same sign as (−1)νG
(ν)
f (kν) for all 0 ≤ n < Nf,ν , then for all non-negative integers `,

ξf (`) has the same sign as (−1)νG
(ν)
f (kν).

The paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3, we give
some applications, including asymptotics and positivity statements for the generalized Fishburn
numbers ξt(n) which arise from the Kontsevich-Zagier series Ft(q) associated to the colored
Jones polynomial for the family of torus knots T (3, 2t), t ≥ 2 [8]. This extends (1.2) and gives
an alternative proof of the positivity of the Fishburn numbers ξ(n) (see Corollary 3.1 and Remark
3.2). In Section 4, we comment on asymptotics for other expansions of Ff (q) and then conclude
with conjectures concerning the positivity of coefficients for these expansions in three situations:
Ft(q), the Kontsevich-Zagier series associated to the colored Jones polynomial for the family of
torus knots T (2, 2m+ 1), m ≥ 1 and a “Habiro-type” q-series with origins in Ramanujan’s lost
notebook [3].

2. Proof of Theorem 1.1

Proof of Theorem 1.1. We follow the strategy of [19]. To find the asymptotics of ξf (n), we first
consider the expansions

Ff (e−t) =

∞∑
n=0

Bn,f
n!

tn (2.1)

and

e
−ta
b Ff (e−t) =

∞∑
n=0

Cn,f
n!

(
t

b

)n
. (2.2)

Let

P(ν)
a,b,f (q) := q

a
b θ

(ν)
a,b,f (q)



4 ANKUSH GOSWAMI, ABHASH KUMAR JHA, BYUNGCHAN KIM, AND ROBERT OSBURN

and define the L-function

L(s, f) =
∞∑
n=1

f(n)

ns
.

The Mellin transform of P(ν)
a,b,f (e−t) is∫ ∞

0
ts−1P(ν)

a,b,f (e−t)dt =

∞∑
n=0

nνf(n)

∫ ∞
0

ts−1e
−tn2
b dt

= bsΓ(s)
∞∑
n=0

f(n)

n2s−ν

= bsΓ(s)L(2s− ν, f) (2.3)

where Γ(s) is the usual Gamma function. Applying Mellin inversion to (2.3), we obtain

P(ν)
a,b,f (e−t) =

1

2πi

∫
Re(s)=c

bsΓ(s)L(2s− ν, f)
ds

ts

where Re(s) = c is the abscissa of absolute convergence of bsΓ(s)L(2s−ν,f)
ts . It is well-known that

L(s, f) can be analytically continued to the whole complex plane except for a possible simple
pole at s = 1 with residue

Rf,M :=
1

M

∑
m (mod M)

f(m).

By a standard complex analytic computation, we have

P(ν)
a,b,f (e−t) ∼

∞∑
n=0

(−1)nL(−2n− ν, f)

bnn!
tn +

b
ν+1
2 Γ

(
ν+1

2

)
Rf,M

t
ν+1
2

as t→ 0+. By (1.4) and (2.2), we compare coefficients to obtain

Cn,f = (−1)nL(−2n− ν, f). (2.4)

Also, it is clear from (1.4) and (2.2) that Rf,M = 0. Via [15, Eqn. (24)] or [6, Chapter 12], we
have

L(−2n− ν, f) = (−1)n+ν

(
M

2π

)2n+ν+1 (2n+ ν)!√
M

∞∑
k=1

G
(ν)
f (k)

k2n+ν+1
. (2.5)

Let kν ≥ 1 be the smallest integer such that G
(ν)
f (kν) 6= 0. Then

L(−2n− ν, f) = (−1)n+ν

(
M

2π

)2n+ν+1 G
(ν)
f (kν)(2n+ ν)!

k2n+ν+1
ν

√
M

(
1 +O

((
kν

kν + 1

)2n−ε
))

(2.6)
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for any ε > 01. Using (2.4) and (2.6), it follows

Cn,f = (−1)ν
(
M

2π

)2n+ν+1 G
(ν)
f (kν)(2n+ ν)!

k2n+ν+1
ν

√
M

(
1 +O

((
kν

kν + 1

)2n−ε
))

. (2.7)

From (2.1), we have

Bn,f =
1

bn

n∑
k=0

(
n

k

)
an−kCk,f =

1

bn

(
Cn,f + naCn−1,f +

n(n− 1)a2

2
Cn−2,f + · · ·

)
. (2.8)

From (2.7) and (2.8), we deduce

Bn,f =
Cn,f
bn

(
1 +

na
(

2πkν
M

)2
(2n+ ν − 1)(2n+ ν)

+
n(n− 1)a2

(
2πkν
M

)4
2(2n+ ν − 3)(2n+ ν − 2)(2n+ ν − 1)(2n+ ν)

+ · · ·

)
. (2.9)

An application of Stirling’s formula

n! =
√

2πn
(n
e

)n(
1 +

1

12n
+

1

288n2
+ · · ·

)
(2.10)

implies

(2n+ ν)!

n!2
=

22n+νnν−
1
2

√
π

(
1 +

(−1)ν+1(2ν + 1)

8n
+

(−1)ν(6ν + 1)

128n2
+ · · ·

)
. (2.11)

Combining (2.7), (2.9) and (2.11) yields

Bn,f = (−1)ν
(

M

2πkν

)2n+ν+1 G
(ν)
f (kν)22n+νn!2nν−

1
2

bn
√
πM

(
1 +O

((
kν

kν + 1

)2n−ε
))

×
(

1 +
(−1)ν+1(2ν + 1)

8n
+

(−1)ν(6ν + 1)

128n2
+ · · ·

)(
1 +

na
(

2πkν
M

)2
(2n+ ν − 1)(2n+ ν)

+
n(n− 1)a2

(
2πkν
M

)4
2(2n+ ν − 3)(2n+ ν − 2)(2n+ ν − 1)(2n+ ν)

+ · · ·

)

and so

Bn,f ∼ (−1)ν
(

M

2πkν

)2n+ν+1 G
(ν)
f (kν)22n+νn!2nν−

1
2

bn
√
πM

(
1 +

α1,f,ν

n
+
α2,f,ν

n2
+ · · ·

)
(2.12)

1We can take ε = 0 when ν = 1.
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where α1,f,ν :=
a( 2πkν

M )
2

4 + (−1)ν+1(2ν+1)
8 and all the remaining constants αi,f,ν are effectively

computable. Now, we recall

tm

m!
=
∞∑
n=m

Sn,m
(1− e−t)n

n!
(2.13)

where Sn,m denotes the Stirling numbers of the first kind. From (2.1) and (2.13), we interchange
sums

Ff (e−t) =
∞∑
m=0

Bm,f

∞∑
n=m

Sn,m
(1− e−t)n

n!
= B0,f +

∞∑
n=1

(1− e−t)n

n!

n∑
m=1

Sn,mBm,f

and thus

ξf (n) =
1

n!

n−1∑
m=0

Sn,n−mBn−m,f . (2.14)

Next, from Sn,n = 1 and the recursion Sn+1,m = Sn,m−1 + nSn,m we have

Sn,n−m =
n2m

2mm!

(
1− β1(m)

n
+
β2(m)

n2
+ · · ·

)
(2.15)

with computable coefficients β1(m) = 2m2+m
3 , β2(m), · · · . From (2.12), it follows

Bn−m,f
Bn,f

=

(
bk2
νπ

2

M2

)m(
(n−m)!

n!

)2(
1 +O

(
1

n

))
(2.16)

and by (2.10)(
(n−m)!

n!

)2

=
1

n2m

(
1 +

m(m− 1)

n
+

3m4 − 4m3 +m

6n2
+ · · ·

)
. (2.17)

Finally, we combine (2.14)–(2.17) to obtain

ξf (n) =
Bn,f
n!

n−1∑
m=0

1

m!

(
bk2
νπ

2

2M2

)m(
1 +O

(
1

n

))
×
(

1− β1(m)

n
+
β2(m)

n2
+ · · ·

)(
1 +

m(m− 1)

n
+

3m4 − 4m3 +m

6n2
+ · · ·

)
=
Bn,f
n!

( ∞∑
m=0

1

m!

(
bk2
νπ

2

2M2

)m
+O

(
1

n

))

=
Bn,f
n!

e
bk2νπ

2

2M2

(
1 +O

(
1

n

))
.

The result (1.8) now follows from (2.12). Now for fixed f , we have from (2.4) and (2.5)

Cn,f = (−1)νG
(ν)
f (kν)

(
M

2π

)2n+ν+1 (2n+ ν)!

k2n+ν+1
ν

√
M

1 +
1

G
(ν)
f (kν)

∞∑
k=kν+1

G
(ν)
f (k)

k2n+ν+1

 . (2.18)
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Next, (1.5) implies ∣∣∣∣∣∣ G
(ν)
f (k)

G
(ν)
f (kν)

∣∣∣∣∣∣ ≤Mf,ν

and this yields ∣∣∣∣∣∣ 1

G
(ν)
f (kν)

∞∑
k=kν+1

G
(ν)
f (k)

k2n+ν+1

∣∣∣∣∣∣ ≤Mf,ν (ζ(2n+ ν + 1)− 1) < 1 (2.19)

for n ≥ N (max)
f,ν where N

(max)
f,ν is as in (1.7). Clearly, we can choose 0 ≤ Nf,ν ≤ N

(max)
f,ν satisfying

(2.19) for n ≥ Nf,ν . For such an Nf,ν , it now follows from (2.18) that Cn,f and (−1)νG
(ν)
f (kν)

have the same sign for all n ≥ Nf,ν . Next, we note using (2.4) and [2, Lemma 3.2] that

Cn,f = (−1)n+1 M2n+ν

2n+ ν + 1

M∑
m=1

f(m)B2n+ν+1

(m
M

)
(2.20)

where for k ≥ 0, Bk(x) denotes the kth Bernoulli polynomial. Hence (2.20) implies that if Cn,f ,

or equivalently (1.9), has the same sign as (−1)νG
(ν)
f (kν) for 0 ≤ n < Nf,ν , then (2.8) and (2.14)

imply that ξf (`) has the same sign as (−1)νG
(ν)
f (kν) for all ` ≥ 0. �

3. Examples

In this section, we illustrate Theorem 1.1 with three examples.

3.1. Kontsevich-Zagier series for torus knots T (3, 2t). For t ≥ 2, consider the Kontsevich-
Zagier series associated to the family of torus knots T (3, 2t)

Ft(q) = (−1)h
′′(t)q−h

′(t)
∞∑
n=0

(q)n
∑

3
∑m(t)−1
`=1 j``≡ 1 (mod m(t))

(−1)
∑m(t)−1
`=1 j`q

−a(t)+
∑m(t)−1
`=1

j``

m(t)
+
∑m(t)−1
`=1 (j`2 )

×
m(t)−1∑
k=0

m(t)−1∏
`=1

[
n+ I(` ≤ k)

j`

]
(3.1)

where

h′′(t) =

{
2t−1

3 , if t is even,
2t−2

3 , if t is odd,
h′(t) =

{
2t−4

3 , if t is even,
2t−5

3 , if t is odd,
a(t) =

{
2t−1+1

3 , if t is even,
2t+1

3 , if t is odd,

m(t) = 2t−1, I(∗) is the characteristic function and[
n
k

]
=

(q)n
(q)n−k(q)k

is the q-binomial coefficient.2 The expression Ft(q) matches the Nth colored Jones polynomial

for T (3, 2t) at a root of unity q = e
2πi
N , converges in a similar manner as F (q) and is an element

2For t = 1, one may define the sum over the j` to be 1 in (3.1) to recover (1.1).
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of H (see [8] for further details). The generalized Fishburn numbers ξt(n) are defined by

Ft(1− q) =
∞∑
n=0

ξt(n)qn.

An application of Theorem 1.1 is the following. Note that (1.2) follows after taking t = 1 and
simplifying (for brevity, we only state the leading term).

Corollary 3.1. Let t ≥ 1. As n→∞, we have

ξt(n) ∼
sin( π2t )

2t
√

3π

(
3 · 2t

π

)2n+2
22n+1n!

√
n

(3 · 2t+2)n
e

π2

3·2t+1 . (3.2)

Moreover, let Nt ≥ 0 be the smallest integer such that

ζ(2n+ 2) < sin
( π

2t

)
+ 1 (3.3)

for n ≥ Nt. If

(−1)n
[
B2n+2

(
2t+1 − 3

3 · 2t+1

)
−B2n+2

(
2t+1 + 3

3 · 2t+1

)]
≥ 0 (3.4)

for all 0 ≤ n < Nt, then ξt(`) > 0 for all ` ≥ 0 and t ≥ 1.

Proof. The Kontsevich-Zagier series Ft(q) satisfies the strange identity [8, Proposition 2.4]3

Ft(q)“ = ”θ
(1)
(2t+1−3)2,3·2t+2,χt

(q) (3.5)

where

χt(n) :=


−1

2 if n ≡ 2t+1 − 3, 3 + 2t+2 (mod 3 · 2t+1),
1
2 if n ≡ 2t+1 + 3, 2t+2 − 3 (mod 3 · 2t+1),

0 otherwise.

(3.6)

Note that χt is an even function with period M = 3 · 2t+1. Next, we claim that k1 = 1. To see
this, observe that (1.5) and (3.6) yield

G(1)
χt (1) = − 1√

3 · 2t+1

{
cos

(
2π(2t+1 − 3)

3 · 2t+1

)
+ cos

(
2π(3 + 2t+2)

3 · 2t+1

)
− cos

(
2π(2t+1 + 3)

3 · 2t+1

)
− cos

(
2π(2t+2 − 3)

3 · 2t+1

)}
= − 1√

2t−1
sin
( π

2t

)
(3.7)

which is non-zero for any t ≥ 1. By Theorem 1.1, (3.5) and (3.7), (3.2) follows. To deduce the
positivity statement for ξt(n), we first note using (1.6) and (3.7) that

Mχt,1 =
8

√
3 · 2t+1

∣∣∣G(1)
χt (kν)

∣∣∣ =
4√

3 sin
(
π
2t

) .
3Taking t = 1 in (3.5) and (3.6) recovers (1.3).
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Thus, (1.7) implies that N
(max)
t := N

(max)
χt,1

≥ 0 is the smallest integer satisfying

ζ(2n+ 2) <

√
3

4
sin
( π

2t

)
+ 1

for n ≥ N (max)
t . In fact, ∣∣∣G(1)

χt (k)
∣∣∣ ≤ 1√

2t−1

and thus we obtain using (3.7)∣∣∣∣∣ 1

G
(1)
χt (1)

∞∑
k=2

G
(1)
χt (k)

k2n+2

∣∣∣∣∣ ≤ ζ(2n+ 2)− 1

sin
(
π
2t

) < 1

for n ≥ Nt with 0 ≤ Nt ≤ N (max)
t . Using Theorem 1.1 and the fact that

Bk(x) = (−1)kBk(1− x) (3.8)

for k ≥ 0, it now follows that for all non-negative integers `, ξt(`) > 0 if (3.4) is non-negative
for 0 ≤ n < Nt. �

Remark 3.2. Using Corollary 3.1, we verify (3.4) for 0 ≤ n < Nt to confirm that ξt(`) > 0 for
all ` ≥ 0 and 1 ≤ t ≤ 500. In particular, this shows that ξ(`) > 0 for all ` ≥ 0. In Table 1, we
list values of Nt for 1 ≤ t ≤ 10.

t 1 2 3 4 5 6 7 8 9 10

Nt 0 0 1 1 1 2 2 3 3 4

Table 1. List of values of Nt for 1 ≤ t ≤ 10

3.2. Kontsevich-Zagier series for torus knots T (2, 2m+1). Let m ∈ N. For 0 ≤ ` ≤ m−1,
define the Kontsevich-Zagier series for the torus knot T (2, 2m+ 1) as follows:

X(`)
m (q) :=

∞∑
k1,k2,...,km=0

(q)kmq
k21+···+k2m−1+k`+1+···+km−1

m−1∏
i=1

[
ki+1 + δi,`

ki

]

where δi,` is the characteristic function. The expression X
(`)
m (q) matches the Nth colored Jones

polynomial for T (2, 2m+ 1) when ` = 0 and q = e
2πi
N and is an element of H. Write

X(`)
m (1− q) =:

∞∑
n=0

ξ`,m(n)qn.

Another application of Theorem 1.1 is the following. Observe that (1.2) also follows by choosing

m = 1 and ` = 0 and simplifying as X
(0)
1 (q) = F (q).
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Corollary 3.3. Let m ∈ N and 0 ≤ ` ≤ m− 1. As n→∞, we have

ξ`,m(n) ∼ sin

(
π(`+ 1)

2m+ 1

)(
2m+ 1

π2

)n+1 2n+3n!
√
n√

π
e

π2

8m+4 . (3.9)

Moreover, let Nm,` ≥ 0 be the smallest integer such that

ζ(2n+ 2) < sin

(
π(`+ 1)

2m+ 1

)
+ 1 (3.10)

for n ≥ Nm,`. If

(−1)n
[
B2n+2

(
2m− 2`− 1

8m+ 4

)
−B2n+2

(
2m+ 2`+ 3

8m+ 4

)]
≥ 0 (3.11)

for all 0 ≤ n < Nm,`, then ξ`,m(k) > 0 for all k ≥ 0 and 0 ≤ ` ≤ m− 1.

Proof. Hikami [14, Eqn. (15)] established the strange identity

X(`)
m (q)“ = ”θ

(1)

(2m−2`−1)2,8(2m+1),χ
(`)
m

(q) (3.12)

where

χ(`)
m (n) :=


−1

2 if n ≡ 2m− 2`− 1, 6m+ 2`+ 5 (mod 8m+ 4),
1
2 if n ≡ 2m+ 2`+ 3, 6m− 2`+ 1 (mod 8m+ 4),

0 otherwise.

(3.13)

Note that χ
(`)
m (n) is an even function with period M = 8m+ 4. Next, we claim that k1 = 1. To

see this, observe that (1.5) and (3.13) yield

G
(1)

χ
(`)
m

(1) = − 1√
8m+ 4

{
cos

(
2π(2m− 2`− 1)

8m+ 4

)
+ cos

(
2π(6m+ 2`+ 5)

8m+ 4

)
− cos

(
2π(2m+ 2`+ 3)

8m+ 4

)
− cos

(
2π(6m− 2`+ 1)

8m+ 4

)}
= − 2√

2m+ 1
sin

(
π(`+ 1)

2m+ 1

)
(3.14)

which is non-zero for any m ∈ N and 0 ≤ ` ≤ m − 1. By Theorem 1.1, (3.12) and (3.14), (3.9)
follows. To deduce the positivity statement for ξ`,m(n), we first note using (1.6) and (3.14) that

M
χ
(`)
m ,1

=
8

√
8m+ 4

∣∣∣G(1)

χ
(`)
m

(kν)
∣∣∣ =

2

sin
(
π(`+1)
2m+1

) .
Thus, (1.7) implies that N

(max)
m,` := N

(max)

χ
(`)
8m+4,1

≥ 0 is the smallest integer satisfying

ζ(2n+ 2) <
1

2
sin

(
π(`+ 1)

2m+ 1

)
+ 1 (3.15)

for n ≥ N (max)
m,` . In fact, ∣∣∣G(1)

χ
(`)
m

(k)
∣∣∣ ≤ 2√

2m+ 1
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and thus we obtain using (3.14)∣∣∣∣∣∣ 1

G
(1)

χ
(`)
m

(1)

∞∑
k=2

G
(1)

χ
(`)
m

(k)

k2n+2

∣∣∣∣∣∣ ≤ ζ(2n+ 2)− 1

sin
(
π(`+1)
2m+1

) < 1

for n ≥ Nm,` with 0 ≤ Nm,` ≤ N
(max)
m,` . Using Theorem 1.1 and (3.8), it now follows that for all

non-negative integers k, ξ`,m(k) > 0 if (3.11) is non-negative for 0 ≤ n < Nm,`. �

Remark 3.4. Using Corollary 3.3, we verify (3.11) for 0 ≤ n < Nm,` to confirm that ξ`,m(k) > 0
for all k ≥ 0, 1 ≤ m ≤ 500 and 0 ≤ ` ≤ m− 1. In Table 2, we list values of Nm,` for 1 ≤ m ≤ 5
and 0 ≤ ` ≤ m− 1.

m 1 2 3 4 5
` 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4
Nm,` 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0

Table 2. List of values of Nm,` for 1 ≤ m ≤ 5 and 0 ≤ ` ≤ m− 1

Remark 3.5. In fact, we can determine an infinite number of m and 0 ≤ ` ≤ m− 1 such that
ξ`,m(k) is positive for every k ≥ 0. Let us put ` = cm+ d. Then

(1) It turns out that in order for ` ∈ Z, c and d must be rational numbers in their reduced
forms such that c = p1

q1
and d = p2

q1
so that

p1m ≡ −p2 (mod q1). (3.16)

(2) Let m0 be the smallest non-negative integer satisfying the congruence in (3.16). Then
with the choices of c and d as in (1) and using (3.10) with Nm,` = 0, we have

max

(
0,

2m0 − 3

4

)
≤ cm0 + d ≤ m0 − 1, and

1

2
≤ c ≤ 1. (3.17)

Equations (3.16) and (3.17) can now be used to determine an infinite family of m and 0 ≤
` ≤ m − 1 such that ξ`,m(k) > 0 for all k ≥ 0 and m ≥ 1. For example, let us choose
c = 1 (p1 = 1, q1 = 1). Then (3.16) and (3.17) force m0 = 1 and d = −1. Thus, ξm−1,m(k) > 0
for all k. Similarly, if we choose c = 1

2 (p1 = 1, q1 = 2), then (3.16) implies that m ≡ 1 (mod 2).

This combined with (3.17) force m0 = 1 and d = −1
2 so that we have ξm−1

2
,m(k) > 0 for all k ≥ 0

and integers m ≡ 1(mod 2).

3.3. An example with ν = 0. For k ≥ 1, let Gk(q) denote the q-series

Gk(q) :=
∑

nk≥nk−1≥···≥n1≥0

qnk+2n2
k−1+nk−1+···+2n2

1+2n1(q; q2)nk

[
nk
nk−1

]
q2
· · ·
[
n2

n1

]
q2

(3.18)

and write

Gk(1− q) =:

∞∑
n=0

ξGk(n)qn.

The k = 1 case of (3.18) is of substantial historical and modern importance as it appears in
Ramanujan’s lost notebook (e.g., see [3, Section 5], [4, Entry 9.5.2] or [7, page 419]).
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Corollary 3.6. As n→∞, we have

ξGk(n) ∼
cos
(

π
2(2k+1)

)
22n+2n!

π
3
2
√
n

(
2k + 1

π2

)n
e

π2

8(2k+1) . (3.19)

Moreover, ξGk(n) > 0 for all n ≥ 0 and k ≥ 1.

Proof. It was shown in [2, Example 5.2] that

Gk(q) =

∞∑
n=0

χk(n)q
n2−k2
2k+1 (3.20)

where

χk(n) :=


1 n ≡ k, k + 1 (mod 4k + 2),

−1 n ≡ −k, −k − 1 (mod 4k + 2),

0 otherwise.

(3.21)

Observe that (3.20) is not a strange identity but an actual identity valid for |q| < 1 and every
odd order root of unity q (see [2, Example 3.2]). Although Gk(q) 6∈ H, we note that when q = e−t

with t → 0+, the expression (q; q2)nk in the right-hand side of (3.18) will have an asymptotic
expansion starting with tnk . Hence, the expansions (2.1) and (2.2) for this q-series as t → 0+

are still valid and we can apply Theorem 1.1. First, we have that χk(n) is an odd function with
period M = 4k + 2. Next, we claim that k0 = 1. To see this, observe that for any ` ≥ 1, (1.5)
and (3.21) yield

G(0)
χk

(`) =
4√

4k + 2

[
sin

(
πk`

2k + 1

)
+ sin

(
π(k + 1)`

2k + 1

)]
=

8√
4k + 2

sin

(
π`

2

)
cos

(
π`

2(2k + 1)

)
(3.22)

and thus

G(0)
χk

(1) =
8√

4k + 2
cos

(
π

2(2k + 1)

)
which is non-zero for all k ≥ 1. By Theorem 1.1, (3.20) and (3.22), (3.19) follows. Next, using
(1.6) we get

Mχk,0 =
1

cos

(
π

2(2k + 1)

) .
As cos

(
π

2(2k+1)

)
is an increasing function for k ≥ 1 and

Mχ1,0 · (ζ(3)− 1) = 0.233 · · · < 1,

we can choose Nχk,0 = 1 for all k ≥ 1. To deduce the positivity statement for ξGk(n), we need
only show that

4k+2∑
m=1

χk(m)B1

(
m

4k + 2

)
≤ 0 (3.23)
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for all k ≥ 1. To prove (3.23), we first note that B1(x) = x− 1
2 . Hence, (3.21) implies

4k+2∑
m=1

χk(m)B1

(
m

4k + 2

)
= −1.

�

4. Other expansions and conjectures

Other expansions for F (q) frequently appear throughout the combinatorics literature. For
example, we have [18, A138265]

F

(
1

1 + q

)
= 1 + q + q2 + 2q3 + 5q4 + 16q5 + 61q6 + 271q7 + 1372q8 + · · ·

and [18, A289312]

F

(
1− q
1 + q

)
= 1 + 2q + 6q2 + 26q3 + 142q4 + 946q5 + 7446q6 + 67658q7 + 697118q8 + · · · .

Using Theorem 1.1, we may deduce asymptotics for the coefficients of Ff

(
1

1 + q

)
and Ff

(
1− q
1 + q

)
.

Namely, if we write

Ff

(
1

1 + q

)
=:

∞∑
n=0

gf (n)qn,

then

gf (n) ∼ (−1)ν
(

M

2πkν

)2n+ν+1 G
(ν)
f (kν)22n+νn!nν−

1
2

bn
√
πM

e−
bk2νπ

2

2M2 . (4.1)

This follows upon first noting

Ff

(
1

1 + q

)
= Ff

(
1− q

1 + q

)
=

∞∑
j=0

ξf (j)qj
∞∑
m=0

(−1)m
(
j +m− 1

m

)
qm

and so

gf (n) =
n−1∑
`=0

(−1)`
(
n− 1

`

)
ξf (n− `),

then applying Theorem 1.1. Similarly, if

Ff

(
1− q
1 + q

)
=:

∞∑
n=0

hf (n)qn,

then one can check

hf (n) ∼ (−1)ν
(

M

2πkv

)2n+ν+1 G
(ν)
f (kν)23n+νn!nν−

1
2

bn
√
πM

. (4.2)

Asymptotics for the coefficients of Ft(q), X
(`)
m (q) and Gk(q) with q replaced by 1

1+q or 1−q
1+q

now follow readily from (4.1), (4.2) and Corollaries 3.1, 3.3 and 3.6. Thus, all but finitely
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many coefficients are positive for Ft(q), X
(`)
m (q) and Gk(q) where q is replaced by 1

1+q or 1−q
1+q .

Interestingly, it appears numerically that more is true. Some supporting data is given below in
Tables 3–8.

t = 1 1 + q + q2 + 2q3 + 5q4 + 16q5 + 61q6 + 271q7 + 1372q8 + 7795q9 + 49093q10 + . . .

t = 2 1 + 3q + 8q2 + 31q3 + 160q4 + 1029q5 + 7910q6 + 70658q7 + 718687q8 + . . .

t = 3 1 + 7q + 42q2 + 329q3 + 3395q4 + 43638q5 + 670663q6 + 11980513q7 + . . .

t = 4 1 + 15q + 190q2 + 3005q3 + 61885q4 + 1587420q5 + 48722721q6 + 1739070735q7 + . . .

t = 5 1 + 31q + 806q2 + 25637q3 + 1054465q4 + 54008696q5 + 3311724885q6 + . . .

Table 3. Coefficients for Ft(
1

1+q ) for 1 ≤ t ≤ 5

t = 1 1 + 2q + 6q2 + 26q3 + 142q4 + 946q5 + 7446q6 + 67658q7 + 697118q8 + 8031586q9 + . . .

t = 2 1 + 6q + 38q2 + 318q3 + 3406q4 + 44790q5 + 699126q6 + 12630702q7 + . . .

t = 3 1 + 14q + 182q2 + 2982q3 + 62734q4 + 1630174q5 + 50474886q6 + 1813113398q7 + . . .

t = 4 1 + 30q + 790q2 + 25590q3 + 1064590q4 + 54905390q5 + 3382387174q6 + . . .

t = 5 1 + 62q + 3286q2 + 211606q3 + 17496462q4 + 1797007566q5 + 220762565542q6 + . . .

Table 4. Coefficients for Ft(
1−q
1+q ) for 1 ≤ t ≤ 5

` = 0 1 + 5q + 25q2 + 180q3 + 1725q4 + 20538q5 + 291571q6 + 4801844q7 + . . .

` = 1 2 + 9q + 45q2 + 330q3 + 3195q4 + 38286q5 + 545949q6 + 9020385q7 + . . .

` = 2 3 + 12q + 60q2 + 446q3 + 4350q4 + 52374q5 + 749294q6 + 12410001q7 + . . .

` = 3 4 + 14q + 70q2 + 525q3 + 5145q4 + 62139q5 + 890925q6 + 14779290q7 + . . .

` = 4 5 + 15q + 75q2 + 565q3 + 5550q4 + 67134q5 + 963578q6 + 15997212q7 + . . .

Table 5. Coefficients for X
(`)
5 ( 1

1+q ) for 0 ≤ ` ≤ 4
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` = 0 1 + 10q + 110q2 + 1650q3 + 32230q4 + 776666q5 + 22237534q6 + 737031746q7 + . . .

` = 1 2 + 18q + 198q2 + 3018q3 + 59598q4 + 1446210q5 + 41605014q6 + 1383694074q7 + . . .

` = 2 3 + 24q + 264q2 + 4072q3 + 81048q4 + 1976760q5 + 57067560q6 + 1902795528q7 + . . .

` = 3 4 + 28q + 308q2 + 4788q3 + 95788q4 + 2344076q5 + 67828068q6 + 2265402148q7 + . . .

` = 4 5 + 30q + 330q2 + 5150q3 + 103290q4 + 2531838q5 + 73345162q6 + 2451727038q7 + . . .

Table 6. Coefficients for X
(`)
5 (1−q

1+q ) for 0 ≤ ` ≤ 4

k = 1 1 + q + 3q2 + 11q3 + 50q4 + 280q5 + 1892q6 + 15052q7 + 137957q8 + . . .

k = 2 1 + 2q + 8q2 + 42q3 + 293q4 + 2630q5 + 29054q6 + 380894q7 + 5773064q8 + . . .

k = 3 1 + 3q + 15q2 + 103q3 + 977q4 + 12137q5 + 186601q6 + 3411009q7 + 72158001q8 + . . .

k = 4 1 + 4q + 24q2 + 204q3 + 2454q4 + 39000q5 + 768720q6 + 18028512q7 + . . .

k = 5 1 + 5q + 35q2 + 355q3 + 5180q4 + 100346q5 + 2413318q6 + 69085190q7 + . . .

Table 7. Coefficients for Gk(
1

1+q ) for 1 ≤ k ≤ 5

k = 1 1 + 2q + 6q2 + 34q3 + 278q4 + 2978q5 + 39302q6 + 615554q7 + 11151446q8 + . . .

k = 2 1 + 4q + 20q2 + 180q3 + 2420q4 + 42916q5 + 940244q6 + 24478804q7 + . . .

k = 3 1 + 6q + 42q2 + 518q3 + 9674q4 + 239302q5 + 7323946q6 + 266553414q7 + . . .

k = 4 1 + 8q + 72q2 + 1128q3 + 26952q4 + 855240q5 + 33608136q6 + 1571210280q7 + . . .

k = 5 1 + 10q + 110q2 + 2090q3 + 60830q4 + 2355562q5 + 113032942q6 + 6454755274q7 + . . .

Table 8. Coefficients for Gk

(
1−q
1+q

)
for 1 ≤ k ≤ 5

Based on the evidence in Remarks 3.2 and 3.4, the computations in Remark 3.5 and Tables
3–8, we make the following

Conjecture 4.1. We have

(1) the coefficients of Ft(1− q), Ft( 1
1+q ) and Ft(

1−q
1+q ) are positive for all t ≥ 1.

(2) the coefficients of X
(`)
m (1 − q), X(`)

m ( 1
1+q ) and X

(`)
m (1−q

1+q ) are positive for all m ∈ N and

0 ≤ ` ≤ m− 1.
(3) the coefficients of Gk(

1
1+q ) and Gk(

1−q
1+q ) are positive for all k ≥ 1.
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