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Abstract. An integer n is said to be ternary if it is composed of three distinct odd primes.
In this paper, we asymptotically count the number of ternary integers n ≤ x with the
constituent primes satisfying various constraints. We apply our results to the study of the
simplest class of (inverse) cyclotomic polynomials that can have coefficients that are greater
than 1 in absolute value, namely to the nth (inverse) cyclotomic polynomials with ternary
n. We show, for example, that the corrected Sister Beiter conjecture is true for a fraction
≥ 0.925 of ternary integers.

1. Introduction

Let ω(n) denote the number of distinct prime factors in the prime factorisation of n and let
Ω(n) be the total number of prime factors. Put

π(x, k) =
∑

n≤x, ω(n)=k

1 and N(x, k) =
∑

n≤x, Ω(n)=k

1.

Note that π(x, 1) counts the number of primes p ≤ x. As is usual, we will write π(x) instead
of π(x, 1).

In [21] Landau, confirming a conjecture of Gauss, showed that as x→∞

(1) π(x, k) ∼ N(x, k) ∼ x

log x

(log log x)k−1

(k − 1)!
.

This result for k = 1 yields the Prime Number Theorem, which states that as x→∞

π(x) ∼ x

log x
.

Nowadays, using the Selberg-Delange method, much more precise estimates can be given (see
e.g. Tenenbaum [25, pp. 200–206]). In particular, we have

(2) π(x, k) =
x

log x

(log log x)k−1

(k − 1)!

(
1 + ok

(
1

log log x

))
,

and a similar estimate holds for N(x, k). Various authors considered the related problem
where k is allowed to vary to some extent with x. For a nice survey, see Hildebrand [16].

In this paper, we establish some variations of the result of Landau in case k = 3 (see Section
2), which might be of some interest for cryptography, but certainly have some applications
in the theory of coefficients of cyclotomic polynomials (see Section 7). Here, in particular,
ternary integers are of importance.
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Definition. An integer n is said to be ternary if it is of the form n = pqr with 3 ≤ p < q < r
primes. It is constrained if on at least one of p, q and r a constraint is imposed.

Let NT (x) denote the number of ternary n ≤ x, that is the number of integers up to x
consisting of exactly 3 different odd prime factors. It is an easy consequence (see Corollary
1) of the validity of the estimate in (2) for N(x, k) that asymptotically

(3) NT (x) =
x(log log x)2

2 log x

(
1− (1 + o(1))

log log x

)
.

2. Results on constrained ternary integers

The theory of ternary (inverse) cyclotomic coefficients naturally leads to some questions
in analytic number theory. For the sake of brevity we consider only a few of those. Their
applications are discussed in Section 7.4.

Theorem 1. Let p, q, r be primes. Put

T (x) =

{
pqr ≤ x : 3 ≤ p < q < r <

(
p− 1

p− 2

)
(q − 1), r ≡ q ≡ ±1(mod p)

}
.

We have

|T (x)| = C1
x

(log x)2
+O

(
x log log x

(log x)3

)
,

where

(4) C1 = 4
∑
p≥3

1

p(p− 1)2
log

(
p− 1

p− 2

)
= 0.249029016616718 . . .

The terms of the sum C1 are O(p−4) and this allows one to obtain C1 with the indicated
precision by truncation at a sufficient large p.

Theorem 1 can be applied to obtain analytic results on ternary inverse cyclotomic coeffi-
cients, see Theorem 9 in Section 7.4.1. Note that for x ≥ 561 the smallest integer in T (x) is
561, which is also the smallest Carmichael number.

Theorem 2. Let a be an integer and p, q, r be distinct odd primes. Define

Ta(x) = {pqr ≤ x : 3 ≤ p < q < r, r ≡ a(mod pq)}.
Then

|Ta(x)| = C2
x

log x
+O

(
x log log x

(log x)2

)
,

where

(5) C2 =

(∑
p

1

p(p− 1)

)2

= 0.597771234896174 . . .

Here the convergence of the prime sum is much poorer. However, it is easily related to zeta
values at integer arguments, see [10, p. 230], and in this way one obtains∑

p

1

p(p− 1)
=
∞∑
k=1

(ϕ(k)− µ(k))

k
log ζ(k) = 0.77315666904975 . . . .

Theorem 2 allows one to deduce asymptotic results on the flatness of ternary cyclotomic
polynomials, see Theorem 10 in Section 7.4.2.
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Theorem 3. For every odd prime p ≥ 3 let

M(p) = {(ai(p), bi(p)) : 1 ≤ ai(p), bi(p) ≤ p− 1}
be a set of mutually distinct pairs (ai(p), bi(p)) of cardinality

|M(p)| = αp2 +O(p), as p→∞,
with 0 < α < 1. Put

TM = {pqr : 3 ≤ p < q < r, (q, r) ≡ (ai(p), bi(p)) (mod p), 1 ≤ i ≤ |M(p)|}.
Then

TM (x) =
αx(log log x)2

2 log x

(
1 +O

(
1

log log log x

))
.

Finally, Theorem 3 provides further evidence of the corrected Sister Beiter conjecture, see
Theorem 11 in Section 7.4.3.

3. Auxiliary results

For a positive integer k and a positive real number x we write logk x for the iteratively
defined function given by log1 x = max{1, log x}, where log x is a natural logarithm of x, and
for k ≥ 2, logk x = max{1, logk−1 x}.

We first briefly recall some standard tools.
Chebychev showed that

(6) π(x) = O

(
x

log x

)
.

Since the times of Chebychev our understanding of π(x) has much improved:

Theorem 4 (Prime Number Theorem in strongest form). There exists c > 0 such that

π(x) = li(x) +O

(
xe

(
−c (log x)

3
5

(log log x)
1
5

))
,

where li(x) is the logarithmic integral

li(x) =

∫ x

2

dt

log t
.

The error term above was proved in [12] using the strongest available version of the zero-free
region for ζ-function due to Vinogradov and Korobov. It was shown by Trudgian [27] that
one can take c = 0.2098.

Theorem 5 (Mertens). We have∑
p≤x

1

p
= log log x+A+O

(
1

log x

)
,

valid for all x ≥ 3 with some constant A.

Theorem 6 (Siegel-Walfisz). Given any A > 0, there exists a constant c1(A) such that if
d ≤ logA x, then

π(x; a, d) =
Li(x)

ϕ(d)
+O(xe−c1(A)

√
log x),

where π(x; a, d) = |{p ≤ x : p ≡ a(mod d)}|.
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Lemma 1. Put y := exp(log x/ log2 x) and z1 := exp((log x)1/ log3 x). Then there exist positive
constants A and B such that if z1 < p and plog2 x < t ≤ y, then

(7) π(t; p, a) =
π(t)

p− 1

(
1 +O

(
1

(log t)A

))
holds for all residue classes a ∈ {1, . . . , p− 1} and all t except for at most 2 log2 x exceptional
primes p each of which exceeds log2 x.

Remark. Observe that since t > z1, it follows that (log t)A > log2 x holds for all x sufficiently
large. Thus, we may assume that also the error in the estimate of the above lemma (uniformly
in our range for t), is larger than log2 x.

Proof. We follow the proof of Linnik’s theorem from page 54 in [7]. Let p ∈ (z1, y
1/ log2 x) be

fixed. Let t > plog2 x. There it is shown that if p ≤ T is any modulus then∑
q≤t

q≡a(mod p)

log q =
t

ϕ(p)
+ E +O

(
t1/2 +

t log t

T

)
,

where E is a certain sum over zeros of characters of L functions L(s, χ), where χ are characters
modulo p. It is further shown that

E = −χ1(a)
tβ1

β1
+O

(
F

ϕ(p)

)
,

where the term −χ1(a)tβ1/β1 appears only if there exists an exceptional zero relative to the

pair (T, c1). For us, we put T := t2/ log2 x and take any c1. Then p ≤ T 1/2. If there is an
exceptional zero with respect to the pair (T, c1), then than it is unique. Further, it is also
exceptional for the pair (T ′, c1/2) for any T ′ ∈ [T, T 2], and it satisfies

p > (log(T 1/2))c2 = (log T )c2/2.

Since p > z1, we have that t > z
log2 x
1 , so

log t > (log2 x)z1 = (log2 x)(log x)1/ log3 x > (log2 x)2 for x > x0.

Hence,

log T =
2 log t

log2 x
> (log t)1/2

uniformly for all our t when x > x0, so p > (log T )c2/2 > (log t)c2/4. Note that since t >

plog2 x > z
log2 x
1 , it follows easily that

(log t)c2/2 > ((log2 x)(log x)1/ log3 x)c2/2 > log2 x

for all x > x(c1). Let us count how many exceptional primes like this can there be. Since we
just said that if there is some exceptional prime for T , then it is also the exceptional prime for

all T ′ ∈ [T, T 2], it follows that if we take t1 := z
log2 x
1 , t2 := t21, t3 := t22, . . . , tk := t2k−1, where

k is the smallest positive integer such that tk ≥ y, then there can be at most k exceptional

primes altogether. Clearly, from the above recurrence we have tj = t2
j

1 . Hence,

y ≤ t2k1 = (z
2 log2 x
1 )2k ,

and upon taking logarithms we get

log x

log2 x
≤ 2k(log2 x)(log x)1/ log3 x,
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and taking logarithms once again we get

k log 2− log2 x

log3 x
≥ log2 x− 2 log3 x.

Hence,

k =

(
1

log 2
+O

(
1

log3 x

))
log2 x,

so clearly, k < 2 log2 x for all x large enough. From now on, we discard the exceptional primes
and work with the remaining ones. For them,

E = O

(
F

ϕ(p)

)
,

where by arguments from the middle of page 55 in [7] together with the fact that we are under
the assumption that there is no exceptional zero, F is bounded as

F � t1/2T 5 +
(log t)t1−c1/ log T

log(t/T c3)
if t > T c3 .

For us, the inequality t > T 2c3 holds for all x > x0, so log(t/T c3)� log t. Further, since in fact
log T ≤ 2 log t/ log log x ≤ 2 log t/ log log t, it follows that 1−c1/ log T ≥ 1−2c1(log log t)/ log t,
therefore the second term on the right above is

� t

(log t)2c1+1
.

Putting everything together, we get that

(8)
∑
q≤t

q≡a(mod p)

log q =
t

log q
+O

(
t1/2 +

t log t

T
+
t1/2T 5

ϕ(p)
+

t

ϕ(p)(log t)2c1+1

)
.

Since ϕ(p) < p ≤ T 1/2 = to(1), the first and third terms above are all dominated by the fourth
term, while the second one is

t log t

T
.

It remains to show that this is also dominated by the fourth one. Since T 1/2 ≥ p > ϕ(p), it
suffices to show that

T 1/2 > (log t)2c1+2.

This is equivalent to

log t

log2 x
> (2c1 + 1) log2 t, or

log t

log2 t
> (2c1 + 1) log2 x.

The function t 7→ log t/ log2 t is increasing for t > ee, and since for us t > z
log2 x
1 > z1, we have

log t

log2 t
>

(log x)1/ log3 x

((log2 x)/ log3 x)

and the last function above exceeds any multiple of log2 x for x sufficiently large. Hence, all
error terms in (8) are dominated by the last one showing that∑

q≤t
q≡a(mod p)

log q =
t

ϕ(p)

(
1 +O

(
1

(log t)A

))
,
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where we can take A = 2c1. This is uniform for all t in our range, and now the desired
conclusion follows by Abel summation. �

Lemma 2. Let k ≥ 1. Put

M(x, k) =
∑

n≤x, Ω(n)=k

µ(n)2.

We have

M(x, k) =
x

log x

(log log x)k−1

(k − 1)!

(
1 + ok

(
1

log log x

))
.

Proof. As remarked in the introduction one has the estimate

(9) N(x, k) =
x

log x

(log log x)k−1

(k − 1)!

(
1 + ok

(
1

log log x

))
.

For k = 1 the result is merely a weaker variant of Theorem 4, the Prime Number Theorem.
For k ≥ 2 the idea of the proof is to relate M(x, k) to N(x, k) and use the estimate (9). Noting
that M(x, 2) = N(x, 2)−

∑
p≤
√
x 1 and using (9) with k = 2, the claim follows for k = 2 and

so we may assume that k ≥ 3.
Observe that if Ω(n) = k, then either n is square-free or n = p2m with Ω(m) = k − 2 and

p a prime. It follows that

M(x, k) = N(x, k) +O
( ∑
p≤
√
x

N(
x

p2
, k − 2)

)
.

Using the trivial estimate N(x, k− 2) = O(x) in the range x1/3 ≤ p ≤
√
x and the non-trivial

estimate (9) in the range p < x1/3, the proof is easily completed. �

Corollary 1. The counting function NT (x) satisfies the asymptotic estimate (3).

Proof. Note that NT (x) = M(x, 3)−M (x/2, 2) +π(x/4) +O(1) and use the lemma for k = 3
and k = 2. �

4. The proof of Theorem 1

Proof of Theorem 1. We observe that for ternary n,

p3 < n ≤ x, therefore p < x1/3

and similarly

pq2 < n ≤ x, therefore q <
√
x/p.

Thus,

|T (x)| =
∑

3≤p<x
1
3

∑
p<q<

√
x/p

q≡±1(mod p)

∑
q<r≤ p−1

p−2 (q−1)

pqr≤x
r≡q(mod p)

1.
(10)

Denote the internal sum over r by σr. We start with a lower bound on |T (x)|. Take p = 3.
Then r ≡ q(mod 3) and q < r < 2q − 2. Thus, by Theorem 6, σr � q

log q for q ≥ q0. Note

also that any such r leads to a legitimate choice for n ∈ T (x) provided that 3q(2q) ≤ x, so,

whenever q ≤
√
x/6. Thus, for x ≥ x0

|T (x)| �
∑

q0≤q≤
√
x/6

q

log q
�
∫ √x/6
q0

tdπ(t)

log t
� t2

(log t)2

∣∣∣√x/6
t=2

� x

(log x)2
.
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We now asymptotically determine T (x) and show that x/(log x)2 is indeed the correct order
of magnitude.

Neglecting the primality condition on r we obtain

(11) σr = π

(
q − 1 +

q − 1

p− 2
; p; q

)
− π(q; p, q) ≤ 1

p

(
q − 1

p− 2
− 1

)
+ 1� q

p2
+ 1.

We now sum up over all q forgetting the congruence condition on q. It follows that for a fixed
p, the number of constrained ternary integers under scrutiny is of order at most

(12)
1

p2

 ∑
q≤
√
x/p

q

+ π

(√
x

p

)
.

For us p < x1/3, therefore log(x/p) � log x, and thus the second term in (12) is, by the
Chebychev estimates (6),

π

(√
x

p

)
�

√
x

√
p log(x/p)

�
√
x

√
p log x

.

For the first term in (12) above, we can also use the Chebychev estimates and get that

∑
q≤
√
x/p

q �
∫ √x/p

2
tdπ(t)� t2

log t

∣∣∣t=√x/p
t=2

� x

p log(x/p)
� x

p log x
.

Thus, for a fixed p, the number of choices for n is at most of order

(13) � x

p3 log x
+

√
x

√
p log x

.

We now sum up over p. We deal first with the second part of (13). There, even forgetting
that p is prime, we get that this part contributes an amount of order at most

√
x

log x

∑
p≤x1/3

1
√
p
�
√
x

log x

∫ x1/3

2

dt√
t
� x

1
2

+ 1
6

log x
=
x2/3

log x
.

Next we deal with the first part of (13) when we sum up over all p > log x. There we get,
even forgetting the condition that p is prime, that this part contributes

(14)
x

log x

∑
p>log x

1

p3
� x

log x

∫ ∞
log x

dt

t3
� x

log x

(
− 1

t2

∣∣∣t=∞
t=log x

)
� x

(log x)3
.

Thus, (12) is small compared to |T (x)| when p > log x. We see that the main contribution
comes from p ≤ log x and from now on, we work under this assumption. Let us now go back
to (11) and assume in addition that q <

√
x/ log x. Summing up over all primes q ≤

√
x/ log x

of this type, we get instead of (12) the number of integers n ∈ T (x) of size at most

1

p2

∑
q≤
√
x/ log x

q + π
(√

x/p
)
� x

p2(log x)3
,

since p ≤ log x. Summing up over all p, we get a contribution of O
(
x/(log x)3

)
to |T (x)|,

which is small.
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So, from now on we work in the range p ≤ log x and
√
x/ log x < q <

√
x/p. One can

rewrite (10) as follows

|T (x)| =
∑

3<p≤log x

∑
√
x

log x
<q<

√
x√
p

q≡±1(mod p)

∑
q<r≤min( p−1

p−2 (q−1), x
pq )

r≡q(mod p)

1 +O

(
x

(log x)3

)
.

So, it makes sense for large x and p ≤ log x to write qp for the solution q to

x

pq
= q − 1 +

q − 1

p− 2
=

(
p− 1

p− 2

)
(q − 1).

Hence,

q − 1

2
=

√
x(p− 2)

p(p− 1)
+O(1) =

√
x(p− 2)

p(p− 1)

(
1 +O

(p
x

))
=

√
x(p− 2)

p(p− 1)
+O(1),

which gives

(15) qp =

√
x(p− 2)

p(p− 1)
+O(1).

Suppose first that q ≤ qp. Then, by Theorem 6, the number of such primes r can be estimated
as

σr =
π(q − 1 + (q − 1)/(p− 2))− π(q)

ϕ(p)
+O

(
q

exp(−c0
√

log q)

)
for some constant c0 > 0. For us, log q = (1/2 + o(1)) log x. Further, by Theorem 4 we have
that

π

(
q − 1 +

q − 1

p− 2

)
− π(q) =

∫ q−1+ q−1
p−2

q

dt

log t
+O

(
q

exp(−c1(log q)3/5(log2 q)
−1/5)

)
for some constant c1 > 0. Putting everything together, we get that when p, q ≤ qp are fixed

σr =
1

p− 1

∫ q−1+ q−1
p−2

q

dt

log t
+O

(
q

exp(−c2
√

log x)

)
for some constant c2 > 0. We split the integral as∫ q−1+ q−1

p−2

q

dt

log t
=

∫ q+ q
p−2

q

dt

log t
+

∫ q−1+ q−1
p−2

q+ q
p−2

dt

log t
.

In the second integral, the length of the interval is O(1) and the integral is of size O(1/ log x).
Thus,

σr =
1

p− 1

∫ q+ q
p−2

q

dt

log t
+O

(
q

exp(−c2
√

log x)

)
.

Now we work on the integral above. We make the substitution t = qu for which dt = qdu.
We get∫ q+ q

p−2

q

dt

log t
=

∫ 1+ 1
p−2

1

qdu

log q + log u
=

q

log q

∫ 1+ 1
p−2

1
du− q

log q

∫ 1+ 1
p−2

1

log u

log q + log u
du

=
q

(p− 2) log q
+O

(
q

p2(log x)2

)
.
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In the last inequality above, we used the fact that 0 ≤ log u ≤ log(1 + 1/(p− 2)) ≤ 1/(p− 2)

for all u ∈ [1, 1 + 1/(p− 2)]. Further, notice that since
√
x/ log x < q <

√
x/p, we have that

log q = 1
2 log x+O(log log x) and hence,

1

log q
=

2

log x

(
1 +O

(
log2 x

log x

))−1

=
2

log x
+O

(
log2 x

(log x)2

)
.

Thus,

(16) σr =
2q

(p− 1)(p− 2) log x
+O

(
q log2 x

p2(log x)2

)
.

Next consider q > qp. Then certainly x/pq � q (in fact, qp >
√
x/(4p) for large enough x).

So, by the same argument and using Theorems 4 and 6, we have

σr =
π (x/(pq))− π(q)

ϕ(p)
+O

(
q

exp(−c3
√

log x)

)
=

x/(pq)− q
(p− 1) log q

+O

(
q

p(log x)2

)
=

2

(p− 1) log x

(
x

pq
− q
)

+O

(
q log2 x

p(log x)2

)
.

(17)

Combining (16) and (17), we get

σr =
2ap,q(x)

(p− 1) log x
+O

(
q log2 x

p(log x)2

)
, where ap,q(x) =

{ q
p−2 if q ≤ qp;
x
pq − q if q > qp.

We sum up over q and first deal with the error term. Since∑
p≤log x

∑
q≤
√
x/
√
p

q≡±1(mod p)

q

p
�
∑
p≥3

1

p

∫ √x/√p
3

t dπ(t; p,±1)�
∑
p≥3

(
t2

p(p− 1) log t

∣∣∣√x/√p
2

)
� x

log x
,

then the error term coming from σr is O
(
x(log x)−3 log2 x

)
. Thus we have

(18) |T (x)| =
∑

p≤log x

∑
√

x
log x

<q≤
√
x√
p

q≡±1(mod p)

2ap,q(x)

(p− 1) log x
+O

(
x log2 x

(log x)3

)
.

It remains to deal with the main term. We let ε ∈ {±1} and sum over all q in the interval√
x/ log x < q < qp such that q ≡ ε(mod p). By Abel’s summation formula, one gets∑

√
x

log x
<q≤qp

q≡ε(mod p)

q = qpπ(qp; p, ε)−
√
x

log x
π

( √
x

log x
; p, ε

)
−
∫ qp

√
x

log x

π(t; p, ε)dt.(19)

By combining Theorem 4 and Theorem 6, we obtain that

π(t; p, ε) =
t

(p− 1) log t
+O

(
t

p(log t)2

)
uniformly in t ∈

[√
x/ log x,

√
x/p
]
.

Thus, one can check that ∑
√

x
log x

<q≤qp
q≡ε(mod p)

q =
q2
p

(p− 1) log x
+O

(
x log2 x

p(log x)2

)
.
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This was for a fixed ε ∈ {±1} and for q ≤ qp. It remains to deal with the contribution of q in

the range qp < q ≤
√
x/p. For this, we need to compute∑

qp<q≤
√
x/p

q≡ε(mod p)

(
x

pq
− q
)

=
x

p

∑
qp<x≤

√
x/p

qp≡ε(mod p)

1

q
−

∑
qp≤q≤

√
x/p

q≡ε(mod p)

q.

The second sum is, by the above arguments,∑
qp<q≤

√
x/p

q≡ε(mod p)

q =
x

p(p− 1) log x
−

q2
p

(p− 1) log x
+O

(
x log2 x

p(log x)2

)
.

Accounting for the fact that we have two values of ε and inserting the above estimates into
(18), we get

|T (x)| =
∑

p≤log x

(
2x

p(p− 1) log x

∑
qp≤q≤

√
x√
p

q≡±1(mod p)

1

q
+

4f(x, p, qp)

(p− 1)(log x)2

)
+O

(
x log2 x

(log x)3

)
,

where

f(x, q, qp) =
q2
p

(p− 2)(p− 1)
− x

p(p− 1)
+

q2
p

p− 1
.

Using (15), we see that

q2
p =

x(p− 2)

p(p− 1)
+O(qp) =

x(p− 2)

p(p− 1)
+O(

√
x)

and hence

f(x, q, qp) =
x

p(p− 1)2
− x

p(p− 1)
+
x(p− 2)

p(p− 1)2
+O

(√
x

p

)
= O

(√
x

p

)
.

Thus, the contribution coming from the sum over p of the term that contains f(x, q, qp), is

O

( √
x

(log x)2

∑
p≤log x

1

p(p− 1)

)
,

which is small. We then have

|T (x)| = 2x

log x

∑
p≤log x

1

p(p− 1)

∑
qp≤q≤

√
x√
p

q≡±1(mod p)

1

q
+O

(
x log2 x

(log x)3

)
.

Using again the Abel summation formula we get (after a short computation) that for a fixed
ε ∈ {±1}, ∑

qp≤q≤
√
x/p

q≡ε(mod p)

1

q
=

1

p− 1

log(p−1
p−2)

log x
+O

(
log2 x

p(log x)2

)
.

Since there are two values for ε ∈ {±1}, the contribution of a fixed p to the number of elements
of T (x) is

4

p(p− 1)2(log x)2
log

(
p− 1

p− 2

)
+O

(
x log2 x

p3(log x)2

)
.
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We now sum over p ≤ log x, getting

4

(log x)2

 ∑
p≤log x

1

p(p− 1)2
log

(
p− 1

p− 2

)+O

 log2 x

(log x)3

∑
p≥3

1

p3

 .

The error term is O(x(log log x)/(log x)3). As for the main term, we can take the sum of the
series to infinity introducing a tail of size∑

p>log x

1

p(p− 1)2
log

(
p− 1

p− 2

)
�

∑
m>log x

1

m4
� 1

(log x)3
.

The result is therefore proved. �

5. Proof of Theorem 2

Proof of Theorem 2. We proceed as in the proof of Theorem 1. Since p3 < pqr ≤ x, then

p < x
1
3 and similarly pq2 < pqr ≤ x implies q <

√
x/p. Thus, we want to count

(20) |Ta(x)| =
∑
p≤x

1
3

∑
p<q<
√
x/p

∑
q<r≤x/pq

r≡a(mod pq)

1.

Let p = 3 and q = 5. Then r runs over some arithmetic progression modulo 15 in the range
5 < r ≤ x/15. By Theorem 6, it follows that |Ta(x)| � x/ log x.

We denote the internal sum over r in (20) by σr. By neglecting the condition of r being
prime we obtain

σr =
∑

q<r≤x/pq
r≡a(mod pq)

1 ≤ 1

pq

(
x

pq
− q
)

=
x

(pq)2
− 1

p
.

Thus,

|Ta(x)| = x
∑
p≤x

1
3

1

p2

∑
p<q<
√
x/p

1

q2
−
∑
p≤x

1
3

1

p

∑
p<q<
√
x/p

1.

Define T ′a(x) = {pqr ≤ x : 3 ≤ p < q < r, r ≡ a(mod pq), g ≥ (log x)2}. Let T ′a(x) count the
integers counted by Ta(x) with the additional requirement that q ≥ (log x)2. We then have∣∣T ′a(x)

∣∣ < x

(log x)2

∑
p≤x

1
3

1

p2

∑
p<q<
√
x/p

1

q
<

x

(log x)2
log2 x

∑
p≤x

1
3

1

p2
� x log2 x

(log x)2
,

where we used Theorem 5. Similarly if p ≥ (log x)2, then we can improve the bound to∣∣T ′a(x)
∣∣� x log2 x

(log x)4
.

By the above we get

|Ta(x)| =
∑

p<(log x)2

∑
p<q<

√
x/p

q<(log x)2

σr +O

(
x log2 x

(log x)2

)
.

On noticing that π(q; a, pq) = π(q), we obtain∑
p<(log x)2

∑
p<q<(log x)2

π (q)�
∑

p<(log x)2

∫ (log x)2

p
tdπ(t)� (log x)6

(log2 x)2
.
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We then write

σr = π

(
x

pq
; a, pq

)
− π(q; a, pq),

and get

|Ta(x)| =
∑

p<(log x)2

∑
p<q<(log x)2

π

(
x

pq
; a, pq

)
+O

(
x log2 x

(log x)2

)
.

Since log(x/pq) = log x+O(log2 x), then the main term above equals

x
∑

p<(log x)2

1

p(p− 1)

∑
p<q<(log x)2

1

q(q − 1)

1

log
(
x
pq

)
=

x

log x

∑
p<(log x)2

1

p(p− 1)

∑
p<q<(log x)2

1

q(q − 1)
+O

(
x log2 x

(log x)2

)
.

We complete the sums above to infinity with an error of a suitable size and get

|Ta(x)| = C2
x

log x
+O

(
x log2 x

(log x)2

)
,

thus concluding the proof.
�

6. The proof of Theorem 3

Note that there are (p−1)2 possible pairs of residue classes (a, b) modulo p with 1 ≤ a, b ≤ p−1.
Recall that

(21) NT (x) = |{n = pqr ≤ x : 3 ≤ p < q < r}| ∼ x(log2 x)2

2 log x
.

Hence, by restricting for each p the number of possibilities of the pair (q, r) modulo p to a
fraction α of the total number of possibilities, we end up with a set of positive integers the
cardinality of which, if we count them up to x, is asymptotic to α times the total number of
positive integers n ≤ x with exactly three prime factors p < q < r. Notice that a comparison
of Theorem 3 with (21) shows that this simple heuristic idea is actually true.

For ease of exposition in the proof of Theorem 3, we now let

y := exp
( log x

log2 x

)
, z1 := exp

(
exp

( log2 x

log3 x

))
, y1 := exp

( log x

exp((log3 x)2)

)
.

The proof of Theorem 3. Let n = pqr ≤ x with p < q < r. Then

p3 < x and pq2 < x,

and so

p < x1/3 and q <
√
x/p.

We may also assume that n > x/ log x, since otherwise there are at most O(x/ log x) integers
n ≤ x, regardless of the number of their prime factors. Thus,

x

pq log x
< r ≤ x

pq
.
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Furthermore, r3 > n > x/ log x, so r > (x/ log x)1/3. Fix p and q. Since r ≤ x/pq, the
number of possibilities for r (disregarding the congruence conditions on (q, r) modulo p) is
less or equal than

(22) π

(
x

pq

)
� x

pq log(x/pq)
� x

pq log x
,

where for the last inequality we used the fact that

x

pq
≥ r >

(
x

log x

)1/3

� x1/4, so log(x/pq)� log x.

Assume q ∈ [y, x]. Then for a fixed p, the number of n ≤ x with such q is by Theorem 5 of
order at most

(23)
x

p log x

∑
y<q<x

1

q
� x

p log x
(log2 x− log2 y + o(1))� x log3 x

p log x
.

Summing up (23) over all p ≤ x1/3, we get an upper bound of

x log3 x

log x

∑
p≤x1/3

1

p
� x log2 x log3 x

log x
= O

(
NT (x)

(
log3 x

log2 x

))
on the set of such n ≤ x. So, from now on we may assume that q ≤ y. Assume that p ≤ z1.
Then summing up (22) over all p ≤ z1 but q fixed, we get a number of n ≤ x of order

x

q log x

∑
p≤z1

1

p
� x

q log x
(log2 z1 +O(1))� x log2 x

q log x log3 x
.

Summing up the above inequality over all q ≤
√
x, we get an upper bound of order

x log2 x

log x log3 x

∑
q≤
√
x

1

q
� x(log2 x)2

log x log3 x
= O

(
NT (x)

log3 x

)
on the set of such n ≤ x, so we can ignore such n. So, from now on z1 < p < q < y. Assume
next that q < plog2 x. Then p < q < plog2 x. Keeping p fixed and summing up inequality (22)
over all such q we get that the number of integers n ≤ x is of order at most

x

p log x

∑
p<q<plog2 x

1

q
� x

p log x
(log2(plog2 x)− log2 p+O(1))� x log3 x

p log x
.

Summing up over all p ≤ x1/3, we get that the total number of n ≤ x is of order at most

x log3 x

log x

∑
p≤x1/3

1

p
� x log2 x log3 x

log x
= O

(
NT (x)

(
log3 x

log2 x

))
,

and this is negligible for us. So, we can ignore such integers n from our argument. So, from
now on, we may assume that plog2 x < q. Since also q < y, it follows that p < y1/ log2 x =
exp(log x/(log2 x)2). In fact, we will do better. We assume that n is such that y1 ≤ p < x1/3.
Then keeping q fixed and summing over such p, we get a totality of n of order at most

x

q log x

∑
y1≤p≤x1/3

1

p
� x

q log x
(log2 x

1/3 − log2 y1)� x(log3 x)2

q log x
.
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Summing up the above bound over all q ≤ y, we get a bound of

x(log3 x)2

log x

∑
q≤y

1

q
� x(log2 x)(log3 x)2

log x
= O

(
NT (x)

(
(log3 x)2

log2 x

))
on the number of such n ≤ x, and this is negligible for us. So, we may assume that p ∈ [z1, y1].

We plan to apply Lemma 1. We deal first with the exceptional primes. Let PE be the set
of such primes. Recall that by Lemma 1 p > log2 x and #PE ≤ 2 log2 x. Fixing p ∈ PE , the
remaining qr ≤ x/p can be chosen in at most

π2

(
x

p

)
� x

p

log2(x/p)

log(x/p)
� x log2 x

p log x

ways. Here we used the fact that plog2 x < y < x and so p < x1/ log2 x, which implies that
log(x/p) � log x. Now p is in a set of at most 2 log2 x elements each larger than log2 x. We
now sum up over p ∈ PE . Discarding the information that they are primes and keeping only
the information about their sizes and the number of them, we get a contribution of at most

x log2 x

log x

∑
p∈PE

log2 x<p
#PE≤2 log2 x

1

p
� x log2 x

log x

(
#PE
log2 x

)
� x log2 x

log x
= O

(NT (x)

log2 x

)

ternary integers, and we are done.
Now we are in a situation were we can apply Lemma 1. We may assume that the estimate

(7) holds for all p ∈ [z1, y1] and all t such that plog2 x < t ≤ y. So, we fix p in our range. We
fix pair of residue classes (a, b) ∈ {1, . . . , p− 1} such that (a, b) ∈ M(p). We also fix q in the
interval (plog2 x, y] such that q ≡ a(mod p). So, we need to count the number of primes

r ∈
[

x

pq(log x)
,
x

pq

]
which are congruent to b(mod p). Then we need to sum up this over all b modulo p such that
(a, b) ∈ M(p), then over all q which are a modulo p, then over all a(mod p) such that there
exist b with (a, b) ∈M(p) and finally over all p. Since (7) applies, the first step gives

π(x/pq)

ϕ(p)

(
1 +O

(
1

log2 x

))
− π(x/pq(log x))

ϕ(p)

(
1 +O

(
1

log2 x

))
,

which equals

(24)
x

pqϕ(p) log(x/pq)

(
1 +O

(
1

log2 x

))
.

Note that

log(x/pq) = log x+O(log y) = (log x)

(
1 +O

(
1

log2 x

))
,

so because of the presence of the error term we can replace the factor log(x/pq) in the de-
nominator in (24) by log x. Thus, the count so far is

x

ϕ(p)pq log x

(
1 +O

(
1

log2 x

))
.
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Now we sum up over all q ∈ [plog2 x, y] which are q ≡ b(mod p). By the Abel summation
formula, we infer that∑

plog2 x≤q≤y
q≡b(mod p)

1

q
=

(
π(t; p, b)

t

∣∣∣t=y
t=plog2 x

)
+

∫ y

plog2 x

π(t; p, b)

t2
dt

•
=

1

ϕ(p)

∫ y

plog2 x

π(t)

t2
dt

•
=

1

ϕ(p)

∫ y

plog2 x

1

t log t

(
1 +O

(
1

log t

))
dt

•
=

1

ϕ(p)

(
log2 y − log2(plog2 x) +O(1)

)
,

where
•
= denotes that the equality is up to a multiplicative factor

1 +O(1/ log2 x).

Note that

log2 y − log2(plog2 x) = log2 x− log2 p+O(log3 x).

Since p ≤ z1, it follows that

log2 x− log2 p ≥ (log3 x)2.

Thus,

log2 y − log2(plog2 x) = (log2 x− log2 p)

(
1 +O

(
1

log3 x

))
.

Thus, we get ∑
plog2 x≤q≤y
q≡b(mod p)

1

q
=

1

ϕ(p)
(log2 x− log2 p)

(
1 +O

(
1

log3 x

))
.

Hence, we get that for fixed p, a and b, the number of such n is

x

pϕ(p)2(log x)
(log2 x− log2 p)

(
1 +O

(
1

log3 x

))
.

Now we sum up over all n(a) which, by definition, is the number of b ∈ {1, . . . , p − 1} such
that (a, b) ∈M(p), then over all the a such that n(a) > 0. Keeping in mind that∑

1≤a≤p−1

n(a) = |M(p)| = αp2 +O(p),

we obtain a contribution of

αx

p log x
(log2 x− log2 p)

(
1 +O

(
1

log3 x

))(
1 +O

(
1

p

))
.

Now we sum the latter expression up over all p ∈ [z1, y1] and on using that 1 + O(1/p) =
1 +O(1/ log3 x) in that range and the fact that∑

p≤t

log2 p

p
=

1

2
(log2 t)

2

(
1 +O

(
1

log2 t

))
,
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we get that the number of r we are after is

(25) α

x log2 x

log x

∑
z1≤p≤y1

1

p
− x

log x

∑
z1≤p≤y1

log2 p

p

(1 +O

(
1

log3 x

))
.

The first sum in (25) above asymptotically equals

log2 y1 − log2 z1 + o(1) = log2 x

(
1 +O

(
1

log3 x

))
.

The second sum in (25) is

1

2

(
(log2 y1)2 − (log2 z1)2 +O(log2 x)

)
=

(log2 x)2

2

(
1 +O

(
1

(log3 x)2

))
.

On putting everything together, the result is proved. �

7. Applications

7.1. Cyclotomic polynomials. We define the height of a polynomial f in Z[x], h(f), to be
the maximum of absolute value of the coefficients of f . A polynomial of height one is said to
be flat.

The nth cyclotomic polynomial Φn is defined by

Φn(x) =
∏

1≤j≤n
(j,n)=1

(x− ζjn) =

ϕ(n)∑
k=0

an(k)xk,

where ϕ is Euler’s totient function and ζn a primitive nth root of unity. For a very readable
introduction to the properties of coefficients of cyclotomic polynomials, the reader is referred
to Thangadurai [26].

The coefficients an(k) are integers that tend to be small. For example, for n ≤ 104 we
have |an(k)| ≤ 1, but a105(7) = −2. Note that 105 is the smallest ternary integer. It can be
shown that if |an(k)| > 1, then n must have at least three distinct odd prime factors. The
case where n is ternary turns out to be the simplest one where the coefficients can be larger
than 1 in absolute value as trivially ap(k) = 1 and apq(k) ∈ {−1, 0, 1} as was first proved by
Migotti [22]. For a more recent reproof see, e.g., Lam and Leung [20].

Gallot and Moree [13] showed that the set {an(k) : 0 ≤ k ≤ ϕ(n)} consists of a string of
consecutive integers in case n is ternary. Different proofs of this fact were given by Bachmann
[4] and Bzdȩga [8]. In all three papers [4, 8, 13] this was achieved by establishing that, in case
n is ternary, |an(k)− an(k − 1)| ≤ 1. Thus neighboring coefficients differ by at most one. In
2014 Bzdȩga [9] went beyond this and characterized all k such that |apqr(k)−apqr(k− 1)| = 1
and determined the number of k’s for which this equality holds. There are various papers
devoted to ternary cyclotomic polynomials, e.g. [1, 2, 3, 6, 14, 15, 18, 28].

For a long time the main conjecture on ternary cyclotomic polynomials was one made by
Sister Marion Beiter in 1968.

Conjecture 1 (Sister Beiter conjecture [5]). Let p < q < r be primes. The cyclotomic
coefficient apqr(k) satisfies |apqr(k)| ≤ (p+ 1)/2.

Sister Beiter herself established her conjecture for p = 3 and p = 5 [6]. Zhao and Zhang [28]
proved it for p = 7. However, for every p ≥ 11 the conjecture is false as was shown by Gallot
and Moree [14]. They put forward the following conjecture.
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Conjecture 2 (Corrected Sister Beiter conjecture, Gallot and Moree [14]). Let p < q < r be
primes. The cyclotomic coefficient apqr(k) satisfies |apqr(k)| ≤ 2p/3.

This conjecture is sharp as it becomes false if the ratio 2/3 is replaced by any smaller number
[14]. It has been shown to hold if the ratio 2/3 is replaced by 3/4 [1].

7.2. Flat cyclotomic polynomials. Cyclotomic polynomials Φn are called flat if h(Φn) =
1. The main challenge here is to find all n such that Φn is flat. For contributions, see
[3, 11, 18, 19]. In particular, Broadhurst made a far reaching conjecture here, cf. [19]. Kaplan
[18] found the following family of cyclotomic polynomials.

Theorem 7 (Kaplan [18]). If p < q are primes and r ≡ ±1(mod pq), then Φpqr is flat.

Elder [11] conjectured that if n has five or more odd prime factors, then Φn is not flat. It
thus seems that flat polynomials are quite sparse.

7.3. Inverse cyclotomic polynomials. We define Ψn(x) = (xn − 1)/Φn(x) to be the nth

inverse cyclotomic polynomial. Since xn − 1 =
∏
d|n Φd(x), we find that Ψn =

∏
d|n,d<n Φd.

Thus Ψn is of degree n − ϕ(n) and has integer coefficients cn(k) which, like those of the
cyclotomic polynomials, tend to be small. For example Ψn has coefficients that are ≤ 1 in
absolute value for n ≤ 560. Moreover, cp(k) ∈ {−1, 1} and cpq(k) ∈ {−1, 0, 1} (compare [23,
Lemma 5]).

We now recall two results on heights of cyclotomic and inverse cyclotomic polynomials due
to Sister Beiter [6] and Moree [23]. By the following result and the Prime Number Theorem for
Arithmetic Progressions (a weaker form of Theorem 6), one infers that the analogues of both
the original and the corrected Sister Beiter conjecture for the ternary (inverse) cyclotomic
polynomials are true for p = 3 and false for every p ≥ 5.

Theorem 8 (Moree [23]). Let p < q < r be odd primes. Then h(Ψn) = p− 1 if and only if

(26) q ≡ r ≡ ±1(mod p) and r <
(p− 1)

(p− 2)
(q − 1).

In the remaining cases, h(Ψn) < p− 1.

We say that a ternary cyclotomic polynomial Ψn is coefficient optimal if h(Ψn) = P (n)−1,
where P (n) denote the smallest prime factor of n. Thus, a ternary integer n = pqr is coefficient
optimal if and only if q and r satisfy (26).

7.4. Analytic results.

7.4.1. An analytic result related to ternary inverse cyclotomic coefficients. On combining The-
orem 8 with Theorem 1, the following result is obtained.

Theorem 9. The number NCO(x) of ternary n = pqr ≤ x such that Ψn is coefficient optimal
satisfies

NCO(x) = C1
x

(log x)2
+O

(
x log log x

(log x)3

)
,

with C1 as in (4).

Corollary 2. We have
NCO(x)

NT (x)
∼ 2C1

(log x)(log log x)2
.

In particular, Ψn is not coefficient optimal for almost all ternary n.

Proof. Combine Corollary 1 and Theorem 9. �
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7.4.2. Flatness. On combining Theorem 2 and Theorem 7, the following result is obtained.

Theorem 10. Let F (x) denote the number of ternary n ≤ x such that Φn is flat. Then

F (x) ≥ (2C2 + o(1))
x

log x
,

with C2 as in (5).

7.4.3. The corrected Sister Beiter conjecture. The next result provides some evidence towards
the corrected Sister Beiter conjecture.

Theorem 11. The number NCB(x) of ternary n ≤ x such that h(Φn) ≤ 2P (n)/3 satisfies

NCB(x) ≥
(25

27
+ o(1)

)x(log log x)2

2 log x
.

Corollary 3. The relative density of ternary integers for which the correct Sister Beiter
conjecture holds true is at least 0.925.

The proof of Theorem 11 makes use of the following estimate due to Bzdȩga [8]. For
completeness, we also consider what would happen if one would use an older estimate (2003)
due to Bachman [1]. In that case we obtain Theorem 11 and Corollary 3 with 25/27 replaced
by 8/9 and 0.925 by 0.888, respectively.

Theorem 12. Let 3 ≤ p < q < r be primes. Let q∗ and r∗ be inverses of q and r modulo
p, respectively that satisfy 1 ≤ q∗, r∗ ≤ p − 1. Set a = min(q∗, r∗, p − q∗, p − r∗) and let
1 ≤ d ≤ p− 1 be defined by the relation adqr ≡ 1(mod p). Then we have (G. Bachman)

−min
(p− 1

2
+ a, d

)
≤ apqr(k) ≤ min

(p− 1

2
+ a, p− d

)
,

and (B. Bzdȩga)

−min
(
p+ 2a− d, d

)
≤ apqr(k) ≤ min

(
2a+ d, p− d

)
.

It is not difficult to show that

d = min(max(q∗, r∗),max(p− q∗, p− r∗)).

Corollary 4. Put d1 = min(d, p− d). We have (G. Bachman)

|apqr(k)| ≤ min
(p− 1

2
+ a, p− d1

)
,

and (B. Bzdȩga)

|apqr(k)| ≤ min
(

2a+ d1, p− d1

)
.

Let 1 ≤ j, k ≤ p− 1 be integers. Put

α = min(j, k, p− j, p− k), δ = min(max(j, k),max(p− j, p− k)),

and δ1 = min(δ, p− δ). Put

GB(j, k) = min
(p− 1

2
+ α, p− δ1

)
and BB(j, k) = min(2α+ δ1, p− δ1).

We can reformulate the latter corollary in the following way.

Corollary 5. If q∗ ≡ j(mod p) and r∗ ≡ k(mod p), then |apqr(k)| ≤ GB(j, k) and |apqr(k)| ≤
BB(j, k).
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Definition. Put

GB(p) = {(j, k) : 1 ≤ j, k ≤ p− 1, GB(j, k) ≤ 2p/3},
and

BB(p) = {(j, k) : 1 ≤ j, k ≤ p− 1, BB(j, k) ≤ 2p/3}.
The cardinality of GB(p) and BB(p) we denote by NGB(p), respectively NBB(p).

It is an elementary, but quite tedious, exercise to evaluate these quantities.

Proposition 1. Let p > 3 be a prime. Then

NGB(p) =

{
8
9p

2 − 16
9 p+ 8

9 if p ≡ 1(mod 3);
8
9p

2 − 8
9p−

16
9 if p ≡ 2(mod 3).

and

NBB(p) =

{
25
27p

2 − ( 8
27(p3) + 2)p+ 73

27 if p ≡ ±2(mod 9);
25
27p

2 − ( 8
27(p3) + 2)p+ 37

27 otherwise.

Proof. We give a sketch. Note that if (j, k) ∈ BB(p), then also (k, j) ∈ BB(p). It thus follows
that

NBB(p) = 2
∑

1≤j<k≤p−1
(j,k)∈BB(p)

1 +
∑

1≤j≤p−1
(j,j)∈BB(p)

1.

Let us concentrate on the first sum as it is more complicated to evaluate. We divide up
the (j, k) region 1 ≤ j < k ≤ p − 1 into pieces on which BB(j, k) takes on a value not
involving a minimum or maximum anymore and compare this value with 2p/3. Each of these
contributions turns out to be a polynomial in p that is at most quadratic and has coefficients
that depend at most on the residue of p modulo 9. Working out each of these contributions
and summing gives the required result. Alternatively, after one has established that the final
answer is a quadratic polynomial depending at most on the residue of p modulo 9, one finds
the formula for NBB(p) be evaluting it for various values of p and inferring the coefficients of
the polynomial from this.

For NGB(p) we find similarly that the result should be a quadratic polynomial depending
at most on the residue of p modulo 3. �

Proof of Theorem 11. Given an integer a coprime to p, we write a∗ for the inverse of a modulo
p satisfying 1 ≤ a∗ ≤ p − 1. If n = pqr satisfies 3 ≤ p < q < r with q ≡ j∗(mod p) and
r ≡ k∗(mod p) and (j, k) ∈ BB(p), then n satisfies the corrected Sister Beiter conjecture by
Corollary 5. By Proposition 1, we have NBB(p) = 25p2/27 + O(p). Now apply Theorem 3
with α = 25/27 and M(p) = {(j∗, k∗) : (j, k) ∈ BB(p)}. �

7.5. Applications in cryptography. In [10] by Camburu et al., there is a ternary counting
problem that is related to attempts of Hong et al. [17] to provide a simple and exact formula
for the minimum Miller loop length in the Atei pairing arising in elliptic curve cryptography.
The problem there is to estimate

{pqr ≤ x : p < q < r, 4(p− 1) > q, p2 > r}.
Also various other ternary counting problems are considered in Camburu et al. [10].

Acknowledgement. The first author was supported in part by NRF (South Africa) Grants
CPRR160325161141 and an A-rated researcher award and by CGA (Czech Republic) Grant
17-02804S.



20 FLORIAN LUCA, PIETER MOREE, ROBERT OSBURN, SUMAIA SAAD EDDIN AND ALISA SEDUNOVA

The fourth author is supported by the Japan Society for the Promotion of Science (JSPS)
“Overseas researcher under Postdoctoral Fellowship of JSPS”. Part of this work was done
while the author was supported by the Austrian Science Fund (FWF) : Project F5507-N26,
which is part of the special Research Program “Quasi Monte Carlo Methods : Theory and
Application”.

References

[1] G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Number Theory 100 (2003), 104–
116.

[2] G. Bachman, Ternary cyclotomic polynomials with an optimally large set of coefficients, Proc. Amer.
Math. Soc. 132 (2004), 1943–1950 (electronic).

[3] G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53–60.
[4] G. Bachman, On ternary inclusion-exclusion polynomials, Integers 10 (2010), 623–638.
[5] Sister M. Beiter, Magnitude of the coefficients of the cyclotomic polynomial Fpqr(x), Amer. Math. Monthly

75 (1968), 370–372.
[6] Sister M. Beiter, Coefficients of the cyclotomic polynomial F3qr(x), Fibonacci Quart. 16 (1978), 302–306.
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