
Differentiation Rules

The next theorem shows that the differentiation formulas for real-valued functions
have their counterparts for vector-valued functions.

Theorem Suppose and are differentiable vector functions, is a scalar,
and is a real-valued function. Then
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2.

3.

4.

5.

6. (Chain Rule)

This theorem can be proved either directly from Definition 1 or by using Theorem
2 and the corresponding differentiation formulas for real-valued functions. The proof of
Formula 4 follows; the remaining proofs are left as exercises.

Proof of Formula 4 Let

Then

so the ordinary Product Rule gives

EXAMPLE 5 Show that if (a constant), then is orthogonal to for 
all .
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