The next theorem shows that the differentiation formulas for real-valued functions have their counterparts for vector-valued functions.

- **3** Theorem Suppose \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Then
- 1. $\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$
- 2. $\frac{d}{dt}[c\mathbf{u}(t)] = c\mathbf{u}'(t)$
- 3. $\frac{d}{dt}[f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$
- **4.** $\frac{d}{dt} [\mathbf{u}(t) \cdot \mathbf{v}(t)] = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$
- 5. $\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$
- **6.** $\frac{d}{dt} [\mathbf{u}(f(t))] = f'(t)\mathbf{u}'(f(t))$ (Chain Rule)