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JEREMY LOVEJOY AND ROBERT OSBURN

Abstract. Recently, Andrews, Hirschhorn and Sellers have proven congruences modulo 3 for
four types of partitions using elementary series manipulations. In this paper, we generalize their
congruences using arithmetic properties of certain quadratic forms.

1. Introduction

A partition of a non-negative integer n is a non-increasing sequence whose sum is n. An
overpartition of n is a partition of n where we may overline the first occurrence of a part. Let
p(n) denote the number of overpartitions of n, po(n) the number of overpartitions of n into odd
parts, ped(n) the number of partitions of n without repeated even parts and pod(n) the number
of partitions of n without repeated odd parts. The generating functions for these partitions are∑

n≥0

p(n)qn =
(−q; q)∞
(q; q)∞

, (1.1)

∑
n≥0

po(n)qn =
(−q; q2)∞
(q; q2)∞

, (1.2)

∑
n≥0

ped(n)qn =
(−q2; q2)∞

(q; q2)∞
, (1.3)

∑
n≥0

pod(n)qn =
(−q; q2)∞
(q2; q2)∞

, (1.4)

where as usual
(a; q)n := (1− a)(1− aq) · · · (1− aqn−1).

The infinite products in (1.1)–(1.4) are essentially the four different ways one can specialize the
product (−aq; q)∞/(bq; q)∞ to obtain a modular form whose level is relatively prime to 3.

A series of four recent papers examined congruence properties for these partition functions
modulo 3 [1, 5, 6, 7]. Among the main theorems in these papers are the following congruences
(see Theorem 1.3 in [6], Corollary 3.3 and Theorem 3.5 in [1], Theorem 1.1 in [5] and Theorem
3.2 in [7], respectively). For all n ≥ 0 and α ≥ 0 we have

po(32α(An+B)) ≡ 0 (mod 3), (1.5)
where An+B = 9n+ 6 or 27n+ 9,
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ped
(

32α+3n+
17 · 32α+2 − 1

8

)
≡ ped

(
32α+2n+

19 · 32α+1 − 1
8

)
≡ 0 (mod 3), (1.6)

p(32α(27n+ 18)) ≡ 0 (mod 3) (1.7)
and

pod

(
32α+3 +

23 · 32α+2 + 1
8

)
≡ 0 (mod 3). (1.8)

We note that congruences modulo 3 for p(n), po(n) and ped(n) are typically valid modulo 6
or 12. The powers of 2 enter trivially (or nearly so), however, so we do not mention them here.

The congruences in (1.5)–(1.8) are proven in [1, 5, 6, 7] using elementary series manipulations.
If we allow ourselves some elementary number theory, we find that much more is true.

With our first result we exhibit formulas for po(3n) and ped(3n+ 1) modulo 3 for all n ≥ 0.
These formulas depend on the factorization of n, which we write as

n = 2a3b
r∏
i=1

pvi
i

s∏
j=1

q
wj

j , (1.9)

where pi ≡ 1, 5, 7 or 11 (mod 24) and qj ≡ 13, 17, 19 or 23 (mod 24). Further, let t denote the
number of prime factors of n (counting multiplicity) that are congruent to 5 or 11 (mod 24).
Let R(n,Q) denote the number of representations of n by the quadratic form Q.

Theorem 1.1. For all n ≥ 0 we have

po(3n) ≡ f(n)R(n, x2 + 6y2) (mod 3)

and
ped(3n+ 1) ≡ (−1)n+1R(8n+ 3, 2x2 + 3y2) (mod 3),

where f(n) is defined by

f(n) =

{
−1, n ≡ 1, 6, 9, 10 (mod 12),
1, otherwise.

Moreover, we have

po(3n) ≡ f(n)(1 + (−1)a+b+t)
r∏
i=1

(1 + vi)
s∏
j=1

(
1 + (−1)wj

2

)
(mod 3) (1.10)

and
(−1)nped(3n+ 1) ≡ po(48n+ 18) (mod 3). (1.11)

There are many ways to deduce congruences from Theorem 1.1. For example, calculating the
possible residues of x2 + 6y2 modulo 9 we see that

R(3n+ 2, x2 + 6y2) = R(9n+ 3, x2 + 6y2) = 0,
and then (1.10) implies that po(27n) ≡ po(3n) (mod 3). This gives (1.5). The congruences in
(1.6) follow from those in (1.5) after replacing 48n+ 18 by 32α(48(3n+ 2) + 18) and 32α(48(9n+
6) + 18) in (1.11). We record two more corollaries, which also follow readily from Theorem 1.1.
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Corollary 1.2. For all n ≥ 0 and α ≥ 0 we have

po(22α(An+B)) ≡ 0 (mod 3),

where An+B = 24n+ 9 or 24n+ 15.

Corollary 1.3. If ` ≡ 1, 5, 7 or 11 (mod 24) is prime, then for all n with ` - n we have

po(3`
2n) ≡ 0 (mod 3). (1.12)

For the functions p(3n) and pod(3n+ 2) we have relations not to binary quadratic forms but
to r5(n), the number of representations of n as the sum of five squares. Our second result is the
following.

Theorem 1.4. For all n ≥ 0 we have

p(3n) ≡ (−1)nr5(n) (mod 3)

and
pod(3n+ 2) ≡ (−1)nr5(8n+ 5) (mod 3).

Moreover, for all odd primes ` and n ≥ 0, we have

p(3`2n) ≡
(
`− `

(n
`

)
+ 1
)
p(3n)− `p(3n/`2) (mod 3) (1.13)

and
(−1)n+1pod(3n+ 2) ≡ p(24n+ 15) (mod 3), (1.14)

where
(•
`

)
denotes the Legendre symbol.

Here we have taken p(3n/`2) to be 0 unless `2 | 3n. Again there are many ways to deduce
congruences. For example, (1.7) follows readily upon combining (1.13) in the case ` = 3 with
the fact that

r5(9n+ 6) ≡ 0 (mod 3),

which is a consequence of the fact that R(9n+ 6, x2 + y2 + 3z2) = 0. One can check that (1.8)
follows similarly. For another example, we may apply (1.13) with n replaced by n` for ` ≡ 2
(mod 3) to obtain

Corollary 1.5. If ` ≡ 2 (mod 3) is prime and ` - n, then

p(3`3n) ≡ 0 (mod 3).

2. Proofs of Theorems 1.1 and 1.4

Proof of Theorem 1.1. On page 364 of [6] we find the identity∑
n≥0

po(3n)qn =
D(q3)D(q6)
D(q)2

,

where
D(q) :=

∑
n∈Z

(−1)nqn
2
.
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Reducing modulo 3, this implies that∑
n≥0

po(3n)qn ≡
∑
x,y∈Z

(−1)x+yqx
2+6y2 (mod 3)

≡
∑
n≥0

f(n)R(n, x2 + 6y2)qn (mod 3).

Now it is known (see Corollary 4.2 of [3], for example) that if n has the factorization in (1.9),
then

R(n, x2 + 6y2) = (1 + (−1)a+b+t)
r∏
i=1

(1 + vi)
s∏
j=1

(
1 + (−1)wj

2

)
. (2.1)

This gives (1.10). Next, from [1] we find the identity∑
n≥0

ped(3n+ 1)qn =
D(q3)ψ(−q3)

D(q)2
,

where
ψ(q) :=

∑
n≥0

qn(n+1)/2.

Reducing modulo 3, replacing q by −q8 and multiplying by q3 gives∑
n≥0

(−1)n+1ped(3n+ 1)q8n+3 ≡
∑
n≥0

R(8n+ 3, 2x2 + 3y2)q8n+3 (mod 3).

It is known (see Corollary 4.3 of [3], for example) that if n has the factorization given in (1.9),
then

R(n, 2x2 + 3y2) = (1− (−1)a+b+t)
r∏
i=1

(1 + vi)
s∏
j=1

(
1 + (−1)wj

2

)
.

Comparing with (2.1) finishes the proof of (1.11). �

Proof of Theorem 1.4. On page 3 of [5] we find the identity∑
n≥0

p(3n)qn ≡ D(q3)2

D(q)
(mod 3).

Reducing modulo 3 and replacing q by −q yields∑
n≥0

(−1)np(3n)qn ≡
∑
n≥0

r5(n)qn (mod 3).

It is known (see Lemma 1 in [4], for example) that for any odd prime ` we have

r5(`2n) =
(
`3 − `

(n
`

)
+ 1
)
r5(n)− `3r5(n/`2).
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Here r5(n/`2) = 0 unless `2 | n. Replacing r5(n) by (−1)np(3n) throughout gives (1.13). Now
equation (1) of [7] reads ∑

n≥0

(−1)npod(3n+ 2)qn =
ψ(q3)3

ψ(q)4
.

Reducing modulo 3 we have∑
n≥0

(−1)npod(3n+ 2)qn ≡ ψ(q)5 (mod 3)

≡
∑
n≥0

r5(8n+ 5)qn (mod 3)

≡ −
∑
n≥0

p(24n+ 15)qn (mod 3),

where the second congruence follows from Theorem 1.1 in [2]. This implies (1.14) and thus the
proof of Theorem 1.4 is complete.

�
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