QUADRATIC FORMS AND FOUR PARTITION FUNCTIONS MODULO 3

JEREMY LOVEJOY AND ROBERT OSBURN

ABSTRACT. Recently, Andrews, Hirschhorn and Sellers have proven congruences modulo 3 for
four types of partitions using elementary series manipulations. In this paper, we generalize their
congruences using arithmetic properties of certain quadratic forms.

1. INTRODUCTION

A partition of a non-negative integer n is a non-increasing sequence whose sum is n. An
overpartition of n is a partition of n where we may overline the first occurrence of a part. Let
p(n) denote the number of overpartitions of n, p,(n) the number of overpartitions of n into odd
parts, ped(n) the number of partitions of n without repeated even parts and pod(n) the number
of partitions of n without repeated odd parts. The generating functions for these partitions are

Sy = e (1.1)

= (@ @)oo
St = i ), (12
gpod(n)q" = m (1.4)

where as usual

(a;q)n == (1 —a)(1 —aq)--- (1 —ag™ ).
The infinite products in (1.1)—(1.4) are essentially the four different ways one can specialize the
product (—aq; q)eo/(bq; @)oo to obtain a modular form whose level is relatively prime to 3.

A series of four recent papers examined congruence properties for these partition functions
modulo 3 [1, 5, 6, 7]. Among the main theorems in these papers are the following congruences
(see Theorem 1.3 in [6], Corollary 3.3 and Theorem 3.5 in [1], Theorem 1.1 in [5] and Theorem
3.2 in [7], respectively). For all n > 0 and o > 0 we have

Po(3%*(An +B)) =0 (mod 3), (1.5)
where An+ B =9n + 6 or 27n + 9,
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17 - 32a+2 -1
8

19. 3%+ 1

ped (32‘”371 + 3

) = ped(32a+2n + ) =0 (mod 3), (1.6)

p(3**(27n +18)) =0 (mod 3) (1.7)
and

pod (32a+3 L2 32;+2 +1
We note that congruences modulo 3 for p(n), p,(n) and ped(n) are typically valid modulo 6
or 12. The powers of 2 enter trivially (or nearly so), however, so we do not mention them here.
The congruences in (1.5)—(1.8) are proven in [1, 5, 6, 7] using elementary series manipulations.
If we allow ourselves some elementary number theory, we find that much more is true.
With our first result we exhibit formulas for p,(3n) and ped(3n + 1) modulo 3 for all n > 0.
These formulas depend on the factorization of n, which we write as

s S
n= 2“3prf" Hq}uj, (1.9)
=1 j=1

where p; =1, 5, 7 or 11 (mod 24) and ¢; = 13, 17, 19 or 23 (mod 24). Further, let ¢t denote the
number of prime factors of n (counting multiplicity) that are congruent to 5 or 11 (mod 24).
Let R(n, Q) denote the number of representations of n by the quadratic form Q.

> =0 (mod 3). (1.8)

Theorem 1.1. For all n > 0 we have
P,(3n) = f(n)R(n, 2% + 6y%) (mod 3)
and
ped(3n+1) = (—1)"" R(8n + 3,22 + 3y*) (mod 3),
where f(n) is defined by

1, otherwise.

1, n=1,6,9,10 (mod 12),
f(n)z{ (mod 12)

Moreover, we have

Po(3n) = F)(1 + (—1)= ) T+ 00 [ (1“;1)“}> (mod 3) (1.10)
i=1 j=1
and

(—1)"ped(3n+1) =p,(48n + 18) (mod 3). (1.11)

There are many ways to deduce congruences from Theorem 1.1. For example, calculating the
possible residues of 22 + 6y? modulo 9 we see that

R(3n + 2,22 + 6y%) = R(9n + 3,2 + 6y%) = 0,
and then (1.10) implies that p,(27n) = p,(3n) (mod 3). This gives (1.5). The congruences in
(1.6) follow from those in (1.5) after replacing 48n + 18 by 32%(48(3n + 2) + 18) and 32*(48(9n +
6) + 18) in (1.11). We record two more corollaries, which also follow readily from Theorem 1.1.
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Corollary 1.2. For alln >0 and a > 0 we have
Po(2°*(An+ B)) =0 (mod 3),
where An+ B =24n+9 or 24n + 15.
Corollary 1.3. If ¢ =1,5,7 or 11 (mod 24) is prime, then for all n with ¢ { n we have
P,(30°n) =0 (mod 3). (1.12)

For the functions p(3n) and pod(3n + 2) we have relations not to binary quadratic forms but
to r5(n), the number of representations of n as the sum of five squares. Our second result is the
following.

Theorem 1.4. For all n > 0 we have
p(3n) = (—=1)"r5(n) (mod 3)

and
pod(3n+2) = (—1)"r5(8n +5) (mod 3).
Moreover, for all odd primes £ and n > 0, we have
B(30%n) = (ﬁ ¢ (%) + 1) 5(3n) — 6p(3n/0%) (mod 3) (1.13)
and
(=1)"pod(3n + 2) = p(24n + 15)  (mod 3), (1.14)
where (%) denotes the Legendre symbol.

Here we have taken p(3n/¢2) to be 0 unless ¢ | 3n. Again there are many ways to deduce
congruences. For example, (1.7) follows readily upon combining (1.13) in the case ¢ = 3 with
the fact that

r5(9n+6) =0 (mod 3),

which is a consequence of the fact that R(9n + 6,22 + y? + 32%) = 0. One can check that (1.8)
follows similarly. For another example, we may apply (1.13) with n replaced by nf for ¢ = 2
(mod 3) to obtain

Corollary 1.5. If ¢ =2 (mod 3) is prime and £ { n, then
p(3¢3°n) =0 (mod 3).

2. PROOFS OF THEOREMS 1.1 AND 1.4
Proof of Theorem 1.1. On page 364 of [6] we find the identity

_ . D(¢*)D(¢°)
;pO(Bn)q = W’

where
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Reducing modulo 3, this implies that

S mBr)t = Y (-1)"" Y (mod 3)

n>0 z,yEZL

Z f(n)R(n,2* + 6y*)¢" (mod 3).
n>0

Now it is known (see Corollary 4.2 of [3], for example) that if n has the factorization in (1.9),
then

Rn,a” + 6%) = (1 + (—1)a+b+t)ﬁ(1 +U)H<1+(2_1)w> (2.1)

i=1 j=1
This gives (1.10). Next, from [1] we find the identity

D
Zped(?)n + )" =

n>0

where

blg) = 3 g2,

n>0
Reducing modulo 3, replacing ¢ by —¢® and multiplying by ¢> gives
Z(—l)”“ped(i%n +1)¢* 3 = Z R(8n +3,22% + 3y*)¢® ™ (mod 3).
n>0 n>0

It is known (see Corollary 4.3 of [3], for example) that if n has the factorization given in (1.9),
then

Rn,20% 1 3%) = (1 - ()= T[4 ) [ ] (1+<2_1>> .

i=1 j=1
Comparing with (2.1) finishes the proof of (1.11). O
Proof of Theorem 1.4. On page 3 of [5] we find the identity
D(¢*)®
D(q)

> p(3n)g" =

(mod 3).

Reducing modulo 3 and replacing ¢ by —¢q yields

> (=1)"5(3n)g" =D r5(n)g"  (mod 3).

n>0 n>0

It is known (see Lemma 1 in [4], for example) that for any odd prime ¢ we have

rs(£2n) = (53 iy (%) n 1) rs(n) — Grs(n/62).
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Here r5(n/¢%) = 0 unless £? | n. Replacing r5(n) by (—1)"p(3n) throughout gives (1.13). Now
equation (1) of [7] reads

T;)(—l)”pod(Sn +2)¢" = Ok

Reducing modulo 3 we have

Z(fl)"pod(?m +2)q"

n>0

¥(g)°  (mod 3)

Z r5(8n +5)¢"  (mod 3)
n>0

= — Zﬁ(%n +15)¢"  (mod 3),
n>0

where the second congruence follows from Theorem 1.1 in [2]. This implies (1.14) and thus the
proof of Theorem 1.4 is complete.

O
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